Erwin Schr odinger著名地创造了有意的悖论术语“ Aperiodic Crystal”,以描述我们现在所知道的DNA,RNA和蛋白质生物学聚合物中各种单体单位的序列[1]。这些序列是遗传控制的,因此是“多态”的,但通常不会改变生物聚合物的热运动或通常的动力学,类似于“晶体”。在最近的时间,尤其是在蛋白质折叠研究的背景下,吸引了很多关注的想法,即这些序列与猝灭障碍的特定实现非常相似(请参阅评论中的参考文献列表[2])。因此,具有淬火序列的杂聚物的问题绝不是新的,它一直在各种领域重新出现 - 而且我认为仍在等待更深入的见解。在这里,我想引起对这两篇完全无关的论文的关注 - 但是,这两个论文都在处理这个问题,尽管在非常不同的情况下。dino osmanovi´c在第一篇推荐论文中考虑了某些单体“活跃”的聚合物链的动力学,而另一些单体则是“被动”。这意味着,被动单体是由常规的热三角相关的兰格文噪声驱动的,而活性单体则受到随机非热力的影响,幅度与热能无关,可能与某些非零相关时间无关。该模型的主要动机是染色质 - 细胞中DNA的功能形式。出于在每个特定细胞中,染色质的某些部分(称为白染色质)涉及积极转录的基因,因此与能量消耗(ATP依赖)工作酶相互作用,例如RNA聚合酶,而染色质(称为异染色质)的其他部分是无源的。
从概率分布中生成样品是机器学习和统计数据中的一项基本任务。本文提出了一种新的方案,用于从分布中取样的新方案,x∈Rd的概率密度µ(x)尚不清楚,但给出了有限的独立样本。我们在有限的地平线t∈[0,1]上构建schr¨odinger桥(SB)扩散过程,该过程诱导了从t = 0处的固定点开始的概率演变,并以t = 1处所需的目标分布µ(x)结束。扩散过程的特征是随机差异方程,其漂移函数可以通过简单的一步过程从数据样本估算。与为SB问题开发的经典迭代方案相比,本文的方法非常简单,高效且计算便宜,因为它不需要培训神经网络,因此在构建网络体系结构时会避免许多挑战。通过在多模式低维模拟数据和高维基准图像数据上进行一系列数值实验来评估我们的新生成模型的性能。实验结果表明,基于SB桥的算法产生的合成类别与从现场最新方法产生的样品相当。我们的配方为开发可以直接应用于大型现实世界数据的有效扩散模型的新机会开辟了新的机会。
自 Chaum 等人 [5] 以来,许多基于经典密码学的投票协议已经得到开发并成功应用。然而,基于经典密码学的协议的安全性基于一些未经证实的计算算法的复杂性,例如大数因式分解。量子计算的研究表明,量子计算机能够在短时间内对大数进行因式分解,这意味着基于此类算法的经典协议已经不安全。为了应对即将到来的量子计算机带来的风险,过去十年中已经开发了许多量子投票协议 [8, 24, 11, 9, 12, 10, 22, 25, 21, 20]。虽然所有这些工作都集中在从密码学角度研究投票的安全性问题,但 Bao 和 Halpern [3] 从社会选择理论的角度研究了量子投票,他们展示了
