时变介质的光学[1-3]具有悠久的历史,其开创性研究可以追溯到1950年代至1970年代[4,5]。材料工程和纳米制造的最新进展已恢复了对这一领域的兴趣,从而在实验者的范围内实现了时间调节的光子结构[6,7]。随着时间的推移调节材料参数可解锁一组有趣的功能[8]。由于模量破坏了时间翻译对称性,因此能量在总体上不能保守[4]。它可以对辐射[9,10],频率转换甚至固定电荷的辐射[11]实现强大而选择性的扩增[11]。热量,即使在没有静态磁场的情况下,介质的时间调节也可以在光学频率下打破时间转换对称性t,从而铺平了朝着强烈非偏置光学结构铺平的方法[12,13]。这些可能性刺激了很多工作,如最近的评论[1-3]。时变介质的物理学与光子晶体的相关区域表现出与工程空间周期性的人工结构相关区域。类似于光子晶体的新兴特性源自其空间结构,时间调节培养基的物理学植根于材料种子的特定形式(图。1)。因此,定期调制的疗法通常称为光子时间晶体(PTC)。请注意,由于外部刺激,这些结构会在时间上破裂翻译对称性,这将它们与时间晶体的适当[14,15]区分开来,其中t破坏了t-破坏性。尽管PTC经常打破T对称性和互惠性,但可用的非偏置响应的多样性仍然在很大程度上没有探索。轴轴电动力学[16],这一直是基本兴趣的重点
来自光学微孔子的耗散kerr孤子(通常称为唯一微型群)已开发用于广泛的应用,包括精度测量,光学频率合成以及超稳的微波和毫米波的产生,都是在芯片上。Microcombs的一个重要目标是自引用,这需要八度带宽来检测和稳定梳子载体信封偏移频率。此外,通常使用频划分来实现梳子间距的检测和锁定。薄膜锂Niobate光子平台,其低损失,强大的二阶和第三阶非线性以及较大的Pockels效应非常适合这些任务。然而,在这个平台上证明,跨八度的孤子巨型镜头很具有挑战性,这在很大程度上是由于强烈的拉曼效应阻碍了可靠的孤子设备的可靠制造。在这里,我们在薄膜锂锂锂上完全连接并跨八度的孤子微角色。通过适当控制微孔自由光谱范围和耗散光谱,我们表明抑制孤子的拉曼效应被抑制,并用近乎无限的产量制造了孤子设备。我们的工作提供了一种明确的方法,可以在强烈的拉曼活性材料上生成孤子。此外,它可以预测单一整合,自我引用的频率标准与已建立的技术,例如薄膜锂锂锂锂。
摘要。由超薄和平面构建块形成的超光学器件可实现紧凑高效的光学设备,从而在纳米尺度上操纵光。可调超光学器件的发展有望实现小型化和高效的光学系统,这些光学系统可以动态适应不断变化的条件或要求,推动从电信和成像到量子计算和传感等领域的创新。二维 (2D) 材料在实现可调超光学方面显示出巨大的潜力,因为它们具有原子级薄层内的量子限制所带来的卓越电子和光学特性。在这篇评论中,我们讨论了基于二维材料的可调超光学在线性和非线性领域的最新进展和挑战,并对这一快速发展的领域的前景进行了展望。
激光器的许多用途对访问特定波长频段的最大重要性。为了表现出来,动员光原子时钟以进行飞跃,需要以频率散布在可见的和近红外的频率下。集成的光子学使高性能,可扩展的激光平台自定义激光培养基以支持全新的频段很具有挑战性,并且通常在可扩展性到早期基于量子的感应和信息系统方面非常不匹配。在这里,我们演示了微孔子光学参数振荡器(OPO),该振荡器(OPO)将泵激光转换为超过八度的频率内的输出波。,我们通过纳米图案在泵激光器模式下打开光子晶体带隙,实现振荡的相位匹配。通过调整纳米光模式并因此,带隙,输出波波频率跨度与所需泵激光调谐的比率超过10,000。我们还演示了以自由光谱范围的步骤调整振荡器,更细化温度,以及激光转换过程的最小添加频率噪声。我们的工作表明,纳米光子可以控制微孔子中激光转换,桥接非线性光学器件的相匹配以及激光设计的应用要求。
Anchit Srivastava,1,2 Kilian Scheftter,1,2 Soyeon Jun,1,2 Andreas Herbst,1,2和Hanieh
光子结构和时间晶体,其中将时间合并为光线操纵的额外自由度,因此需要开发分析和半分析工具。但是,此类工具当前仅限于特定的配置,从而使几种无法探索的物理现象类似于光子时间晶体。在这种交流中,使用耦合波理论方法,我们在时间周期性的双向介质中揭示了发生的光传播现象,其介电性,渗透性和手性参数是定期时间的功能。与它们的静态对应物相反,我们证明了被考虑的动态媒介夫妇仅共同管理反向传播波。在非恒定阻抗的情况下,我们证明在布里鲁因图中形成了两个一阶动量差距,从而导致参数放大,分别具有不同的扩增因子和相应的右手和左手模式的相应力量。手性的存在在控制灯波信号中通过控制共振的中心,相应的带宽和扩增因子在每种模式下以独特的方式来操纵灯波信号。对于培养基的有限“时间单板”,我们通过分析得出散射系数作为时间和动量的函数,讨论了光学旋转的极端值如何访问手学诱导的负面折射状态的时间类似物。最后,我们证明了椭圆极化可能会改变场取向的机制,而电场在动量间隙中传播,从而同时展示了参数放大。
电磁充当电子和光子学之间的关键桥梁,解锁了从通信和计算到传感和量子信息的广泛应用。综合的电磁方法特别是对光子学的必需电子高速控制,同时为电子产品提供了实质性的光子并行性。在薄膜锂锂光子学中的最新进展已取得了革命性的革命性进步。这项技术不仅提供了必要的强电磁耦合,而且还具有超低光损失和高微波带宽。此外,它的紧密限制和与纳米化的兼容性允许前所未有的可重构性和可扩展性,从而促进了曾经在散装系统中几乎被认为几乎不可能的新颖和复杂的设备和系统的创建。在这个平台上建立了该领域,目睹了各种开创性的电磁设备的出现1-12超过了1-6,9-12的当前状态,并引入了以前不存在3,7,8的功能。这一技术飞跃向前提供了一个独特的框架,以探索各种物理领域,包括光子非热式合成维度13-15,主动拓扑物理学16,17和量子电动镜12,18-20。在这篇综述中,我们介绍了电探针的基本原理,即基本科学与技术前沿之间的联系。我们讨论了由薄膜Niobate平台启用的综合电视的成就和未来前景。
电磁充当电子和光子学之间的关键桥梁,解锁了从通信和计算到传感和量子信息的广泛应用。综合的电磁方法特别是对光子学的必需电子高速控制,同时为电子产品提供了实质性的光子并行性。在薄膜锂锂光子学中的最新进展已取得了革命性的革命性进步。这项技术不仅提供了必要的强电磁耦合,而且还具有超低光损失和高微波带宽。此外,它的紧密限制和与纳米化的兼容性允许前所未有的可重构性和可扩展性,从而促进了曾经在散装系统中几乎被认为几乎不可能的新颖和复杂的设备和系统的创建。在这个平台上建立了该领域,目睹了各种开创性的电磁设备的出现1-12超过了1-6,9-12的当前状态,并引入了以前不存在3,7,8的功能。这一技术飞跃向前提供了一个独特的框架,以探索各种物理领域,包括光子非热式合成维度13-15,主动拓扑物理学16,17和量子电动镜12,18-20。在这篇综述中,我们介绍了电探针的基本原理,即基本科学与技术前沿之间的联系。我们讨论了由薄膜Niobate平台启用的综合电视的成就和未来前景。
图。1。操作理论。a。设备示意图。芯片激光泵隔离环,其输出被敲击以向激光提供反馈。当环向顺时针方向泵送时,从反馈注入路径到激光传播的功率与环的逆时针模式并不谐音,并完全回到激光器中,使其稳定。b。在背面反射的影响下设备。反向反射的功率(在泵附近的频带中)与环的逆时针模式并不倾斜,无法倾倒,无法到达激光器。c。在顺时针(红色)和逆时针(蓝色)模式的隔离器环的传输频谱。虚线显示了环的退化冷腔光谱。这种分裂是由于环中的自相和横相调制之间强度的2时差异所致。d。反馈对激光线宽的影响。