我们在芯片上定期推出的Niobate微烯谐振器中证明了参数全光调制。,它通过其总频率生成在两个巨大的人均效率为8的总和频率生成之间采用了两个不同的波浪之间的量子Zeno封锁。2 MHz。 在6 MW峰值功率下,具有纳秒泵脉冲85。 观察到7%的调制灭绝,与以前的实施相比,效率提高了30倍以上。 只有2 MW泵峰值功率为43。 0%的调制灭绝是在4 MW处的双重信号的观察到的。 这首次证明,只有参数非线性光学元件才有可能具有串联性和风扇的光学晶体管。 这些结果,以及此类光子综合电路中的固有优势,为全光和量子信息处理打开了可扩展技术的大门。2 MHz。在6 MW峰值功率下,具有纳秒泵脉冲85。 观察到7%的调制灭绝,与以前的实施相比,效率提高了30倍以上。 只有2 MW泵峰值功率为43。 0%的调制灭绝是在4 MW处的双重信号的观察到的。 这首次证明,只有参数非线性光学元件才有可能具有串联性和风扇的光学晶体管。 这些结果,以及此类光子综合电路中的固有优势,为全光和量子信息处理打开了可扩展技术的大门。在6 MW峰值功率下,具有纳秒泵脉冲85。观察到7%的调制灭绝,与以前的实施相比,效率提高了30倍以上。只有2 MW泵峰值功率为43。0%的调制灭绝是在4 MW处的双重信号的观察到的。这首次证明,只有参数非线性光学元件才有可能具有串联性和风扇的光学晶体管。这些结果,以及此类光子综合电路中的固有优势,为全光和量子信息处理打开了可扩展技术的大门。
摘要:有效的能量转移对于电磁通信至关重要。因此,生产一个实现宽带的波导耦合器,非反射传输是一项艰巨的任务。随着基于硅的集成光子电路的发展,芯片耦合变得越来越重要。尽管已经开发出各种用于芯片耦合的辅助器,但它们通常具有限制,例如长耦合长度,低耦合效率和狭窄的带宽。这是由于无法消除两个波导之间的反射。在这里,我们介绍了一种使用通用阻抗匹配理论和转换光学的方法,以消除两个波导之间的反射。使用此方法的耦合器称为通用阻抗匹配的耦合器,具有最短的次波长耦合长度,99.9%的耦合效率和宽带宽度。
光学天空作为光学和光子学的新兴尖端主题,将非奇异拓扑缺陷的概念扩展到拓扑光子学,从而获得额外的额外自由度,以进行轻度跨性别间的操作,光学计量学,光学计量,光学通知等。[1]。人工光学的实现直到2018年才到期[2,3],而光学天空的追求开始可以追溯到Maxwellian和Kelvin的时代,如图1。Skyrmions Concept的历史是与希腊神话英雄奥德赛的回家旅程相似的。这个故事一直可以追溯到科学家揭示电磁主义的过去。受磁性的卷曲场特性的启发,麦克斯韦认为电磁性应具有旋转起源,并提出了一种以太涡流模型来得出电子磁通剂的方程[4]。之后,开尔文勋爵(Lord Kelvin)进一步提出了一个基于沉浸在以太海中的旋转空灵涡流的结[5]。在1870年代,关于开尔文的Vor-Tex Atoms模型进行了巨大的辩论。Maxwell是漩涡原子爱好者,他在其有影响力的百科全书Bri-Tannica文章“ Atom”中宣传了该模型。对手像鲍尔茨曼一样说,该模型缺乏方程式有效性的任何证据。大约60年后,如图1所示,物理学家的一般利益从原子变为亚原子。结回到舞台上,它被Skyrme用来描述核[6,7]。尽管接受了随着电子和nu clei的发现,涡流原子假说终于被放弃了,而这些结的吸引人的特征,包括离散性和不可分割性,从未被忘记,而结的概念和结的想法则催生了一个关键的现代物理学概念,在现场理论中具有关键的现代物理学概念。在Skyrme的图片中,质子和神经膜被描述为拓扑结的缺陷,在三组分的亲亲田(Skyrmions)中引起了激发。结的数量曲折或结的曲折等于核中核子的数量。和Skyrmions,也正确预测了某些核状态。与开尔文的涡旋原子假设不同,核中的天空基于与倾斜相互作用的非线性场理论。和非线性相互作用在物理上保证除了拓扑原因外,天际在扰动下是稳定的。
方程式读取q t·ϵ1·e 1 t = t 1 -δ= ϵ2 e 2 t = t t = t 1 +δ和h 1 t = t = t 1 -δ= h 2 t = t t = t 1 +δ。使用等式中字段的表达式。(1)
控制集成光子电路中组件的控制对于实现可编程功能至关重要。等离子设备的操作带宽通常一旦制造就无法调整,尤其是在可见的方向上。在这里,我们演示了可见式示例的这种设备的电气控制,以进行外径光学传输(EOT)。(i)EOT设备的操作频率可以通过通过纳米线施加的偏置电压调节。(ii)或在给定频率下,可以连续调整EOT信号(标准化为入射场),例如10-4至0之间。4。这对应于3个幅度调制深度。我们利用嵌入到纳米骨中的量子发射极(QE)引起的FANO共振。外部偏置电压调音量量子量量子的共振。我们还讨论了表面等离子体极化子的寿命延伸,以响应超短脉冲。我们提出的方法提供了对EOT信号的主动电子控制,这使其成为集成光子电路中的可行且紧凑的元素,用于生物感应,高分辨率成像和分子光谱应用。
在光子环境中,复制对称性破坏(RSB)现象的理论建议[1,2]和实验演示[3,4]在复杂系统[5-9]领域产生了巨大影响。在巴黎的磁性自旋玻璃的方法中[10],当在相同条件下制备的系统的复制品可以在自由型的景观中与多个局部最小值一起到达不同的状态时,就会发生RSB。在使用随机激光器(RLS),光学模式和输入激发仪的振幅的磁性类比中,分别是旋转和内部温度的作用[1,2]。非常明显,正如Parisi [5]所说,RSB的实验证据是由Multimode RLS提供的,因为在这种情况下,可以观察模式的占用率,从而直接测量具有RSB签名的顺序参数函数。
远紫外线(100 nm至300 nm)中的超快激光源已成为激烈的实验努力的主题,几十年来,主要是由超快科学领域的先进实验的要求驱动。在充满气体的空心毛细管纤维中经历孤子自我压缩的高能激光脉冲的共振分散波发射有望首次满足这些需求的几种需求,最重要的是,通过将宽范围的波长型曲折性与产生极短的脉冲相结合。从这个角度来看,我们概述了这种对超快远程资料来源的方法,包括其历史起源和潜在的物理机制,艺术的状态和当前的挑战,以及我们对超快科学内外潜在应用的看法。
摘要。结构化的光,在所有自由度下都量身定制复杂的光场,后来已成为高度主题,由一个复杂的工具包提出,包括线性和非线性光学元件。从光中删除不希望的结构的发达远不足以发达,主要利用了扭矩,例如,使用自适应光学器件或复杂通道的逆透射矩阵,都要求通过适当测量来完全表征失真。我们表明,空间结构的光中的扭曲可以通过非线性晶体中的差异产生来纠正,而无需已知的失真。我们使用多种畸变和结构化光模式(包括高阶轨道角动量(OAM)束)证明了方法的多功能性,显示出了原始未发生的磁场的出色恢复。为了突出此过程的功效,我们将系统部署到与OAM的准备和衡量通信链接中,即使传输通道高度差,也显示出最小的互动交谈,并概述如何将方法扩展到替代性实验方式和非线性过程。我们对光校正光的演示无需进行测量,开辟了一种对经典和量子结构光的无需测量误差校正方法,并在成像,传感和通信中直接应用。
非热模型描述了无处不在的开放系统的物理学,并具有增益和损失。非热模型的一个有趣的方面是它们的固有拓扑结构,可以产生有趣的边界现象,例如弹性的高阶拓扑绝缘子(HOTIS)和非铁皮皮肤效应(NHSE)。最近,合成维度中的时期晶格已成为一个多功能平台,用于研究这些效果,而无需几何限制。尽管持有广泛的应用,但到目前为止,对这些效果的研究仅限于静态病例,并且对非铁官效应的完全动态控制仍然难以捉摸。在这里,我们在二维光子合成时间晶格中证明了具有显着的时间可控性和鲁棒性的拓扑非拐角状态的出现。具体来说,我们展示了用于光线限制和流动的各种动态控制机制,包括空间模式逐渐变细,连续的非热性开关开关,动态角状态重定位和光转向。此外,在存在强度调制随机性的情况下,我们建立了角状态的鲁棒性,并定量确定其崩溃制度。我们的发现将非热和拓扑光子效应扩展到较高的合成维度,提供显着的灵活性和实时控制可能性。这为拓扑分类,多种身体动态的量子步行模拟和稳健的浮球工程开辟了途径,没有物理几何形状的局限性。
在过去的几年中,晶体拓扑已在光子晶体中使用,以实现边缘和角落的状态,从而增强了潜在的设备应用的光 - 物质相互作用。然而,当前用于对散装拓扑结晶相分类的带理论方法无法预测任何结果边界 - 定位模式的存在,定位或光谱隔离。虽然不同晶体中材料之间的界面必须具有某种能量的拓扑状态,但这些状态不必出现在带隙内,因此对于应用可能没有用。在这里,我们得出了一类局部标记,用于识别由于结晶对称性以及相应的拓扑保护量度。作为我们基于真实空间的方法本质上是局部的,它立即揭示了拓扑边界 - 定位状态的存在和鲁棒性,从而产生了设计拓扑结晶异质结构的预测框架。除了启用设备几何形状的优化外,我们预计我们的框架还将为依赖空间对称性的其他类别的拓扑类别提供局部标记提供途径。