在过去的几十年中,塑料生产已大大增加,并且已成为现代人类生活的核心。意识到,塑料分解成较小的碎片,导致可直接通过环境进入人类的微塑料或纳米塑料(MNP)。的确,在人体的每个部位(包括胎盘)中发现了MNP,这与发育有关。早期发育阶段对于适当的生长和基因组编程至关重要。MNP中的环境破坏者在此关键窗口中也可能产生有害影响,并可能增加患疾病和功能障碍的风险。此外,MNP可能会影响出生后(例如器官修复期间)重新激活发育途径的情况。当前,尚无关于MNP如何损害(人类)开发和修复的概述。因此,我们提供了有关人类和啮齿动物模型中各种器官的发育和再生过程的MNP的可用证据的广泛概述。此外,我们还包括一些可以从这些MNP中浸出的添加剂的影响。我们得出的结论是,MNP及其添加剂可以对发展和再生器官产生调节作用。
RNA干扰已被利用用于开发治疗剂。siRNA可以是一种强大的治疗工具,因为sirnas的工作机制很简单。siRNA基于其序列确定靶标,并特别调节靶基因的基因表达。然而,长期以来,需要解决的问题是需要解决的问题。在siRNA递送方面的巨大努力导致了siRNA药物开发的显着进步,从2018年到2022年,总共批准了五个siRNA药物来治疗患者。尽管所有由FDA批准的siRNA药物靶向肝脏的肝细胞,但靶向不同器官的基于siRNA的药物仍在临床试验中。在这篇综述中,我们在市场上引入了siRNA药物,并在靶向多个器官的细胞的临床试验中介绍了siRNA药物。肝脏,眼睛和皮肤是siRNA靶向的首选器官。三个或多个siRNA药物候选者正在第2阶段或3阶段的临床试验中,以抑制这些首选器官中的基因表达。另一方面,肺,肾脏和大脑具有挑战性的器官,临床试验相对较少。我们讨论了与siRNA药物靶向的优势和缺点有关的每个器官的特征,以及克服基于器官特异性siRNA药物的siRNA障碍的策略,这些siRNA药物已发展为临床试验。
作为骨体内平衡的关键调节者,Sclerostin在过去的二十年中引起了很多兴趣。尽管硬化素主要由骨细胞表达,并且以其在骨形成和重塑中的作用而闻名,但它也由许多其他细胞表达,并可能在其他器官中起作用。在此,我们旨在将硬化蛋白的近期研究汇总在一起,并讨论硬化蛋白对骨,软骨,肌肉,肝脏,肾脏和心血管和免疫系统的影响。特别关注其在疾病中的作用,例如骨质疏松症和骨髓瘤,以及硬化蛋白作为治疗靶点的新型发育。抗骨蛋白抗体最近已被批准用于治疗骨质疏松症。然而,观察到心血管信号,促使对硬化蛋白在血管和骨组织串扰中的作用进行了广泛的研究。在慢性肾脏疾病中的硬化蛋白表达的研究之后,研究了其在肝脏 - 脂质 - 骨相互作用中的作用,最近发现硬化蛋白作为肌动物作为肌动物的发现促使对骨 - 肌肉关系中的硬化蛋白进行了新的研究。可能,硬化蛋白的作用超出了骨骼的影响。我们进一步总结了使用硬化蛋白作为骨关节炎,骨肉瘤和硬化症的潜在治疗方法的最新发展。总的来说,这些新的治疗方法和发现说明了该领域内的进步,也突出了我们所知的剩余差距。
是由于器官间串扰是人类生物学的重要组成部分,因此受损的器官通常会损害重症患者的其他器官。急性肾脏损伤(AKI)的特征是肾小球效果急性下降,这是通过血清肌酐增加和/或寡尿发展的诊断,在肾脏疾病的诊断标准中反映了肾脏疾病的诊断标准,改善了全球癌症(KDIGO)指南。AKI导致渗透性保留率,电解质障碍,代谢抗体和药物药代动力学改变。炎症介质清除率也降低,导致副业的临时弹药负担增加[1]。TIS与尿毒症毒素的积累结合,有助于内皮损伤和血管通透性增加[2]。除了肾功能丧失,肾应力和/或损害外,还可以在AKI诊断之前(亚临床AKI),还可能引起炎症并具有远程后果[3]。TESE征服可能会因基本的AKI原因而有所不同。
H 2 S现在被认为是多种哺乳动物细胞和组织中的内源性生理调节剂。Produced, in a regulated and cell type-dependent manner, by three major enzyme systems, cystathionine c -lyase (CSE), cystathio- nine b -synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3-MST), H 2 S is present intra- and extracellularly and interacts with proteins, DNA, and other members of the reactive species interactome (例如,氧和氮衍生的氧化剂和自由基)并在各种目标和途径上发挥作用。H 2 S的生理作用在基因转录和翻译,细胞生物能学和代谢,血管张力和免疫功能中的调节中得到充分认识,在中枢神经系统和周围神经系统的各种功能以及与生理学家和临床医生相关的许多其他领域的调节中。本综述对H 2 S在哺乳动物细胞和器官中的生理调节作用进行了全面概述。在生理状况下对这些作用的理解以及对H 2 S稳态的扰动的日益了解(例如,血管疾病,血管疾病,代谢性疾病,各种形式的中枢神经系统疾病,各种形式的中枢神经系统疾病,对跨性别疾病的疾病,其他机构的疾病以及其他机理疗法的诊断和诊断的新机会。在这种情况下,基于H 2 s的替换(通过H 2 s-释放的小分子)的新型实验治疗方法已经出现,并正在转化为临床竞技场。在本综述中突出显示,由于生物合成和/或降解增加,在某些疾病中,H 2 S水平在病理上降低了(例如,再灌注损伤,动脉粥样硬化,动脉粥样硬化以及许多其他形式的血管疾病,以及衰减)。在其他疾病(例如,各种形式的炎症,唐氏综合症和癌症)中,H 2 S水平增加,并且抑制H 2 S产生酶正在作为一种实验性治疗方法出现。进一步了解H 2 S的生理调节作用,再加上旨在调节H 2 S稳态的小分子的药理学和翻译科学的进步,预计将来会产生新颖的诊断和临床疗法方法。
A.微管附着在染色体上。复制染色体以形成姐妹染色体C。在越过的过程中,将染色体固定在一起。Wnt蛋白会影响减数分裂。研究人员研究了两种特定的Wnt蛋白Wnt-4和Wnt-5的影响,对雌性卵巢细胞进入减数分裂的能力。他们从缺少Wnt-4等位基因(Wnt-4 - / - )的卵巢细胞的卵巢细胞中收集了数据(右图),以及缺少Wnt-4等位基因和Wnt-4等位基因的卵巢细胞(Wnt-4等位基因)(Wnt-4-4--/ - / - / - 和Wnt-5 - 5 - / - / - )。您可以从这些数据中得出什么结论?