1 CNC中心神经科学和细胞生物学,科林布拉大学,3004-504 Coimbra,Coimbra,葡萄牙2 IIIUC跨学科研究所,科伊布拉大学,3030-789 Coimbra,Coimbra,Coimbra,Coimbra,Coimtology Barritology Barrib of Avult ovary ovary ovary ovary ovary ovary ova ava ava ava ava ava ava ava ava ava ava ava ava ava ava ava ava ava ava ava ava ava ava 3000-075 Coimbra,葡萄牙4哥布拉大学医学院免疫学研究所,3004-504,葡萄牙Coimbra,葡萄牙5 Coimbra临床与生物医学研究所(ICBR)医学院(ICBR)科伊姆布拉大学医学,鲁阿·拉尔加(Rua Larga),3004-504 Coimbra,葡萄牙 *通信:icbaptista@fmed.uc.uc.pt(I.P.B.); arego@fmed.uc.pt或belk@cnc.uc.pt(A.C.R.);电话。: +351-239-820190(A.C.R.);传真: +351-239-822776(A.C.R.)†当前地址:高级技术校园O GICO和核核,是里斯本大学的CNICO,1649-004葡萄牙Bobadela。
简介 在哺乳动物细胞系中产生有利的基因组特征是基因功能研究极为宝贵的策略之一。1,2 基因组编辑主要通过使用传统方法进行,例如 RNA 干扰 3,4 和同源重组。然而,除了染色体 DNA 的自发裂解之外,所需突变体的频率低和特异性低导致了位点特异性核酸酶的发明。最近,成簇的规律间隔的短回文重复序列 (CRISPR)/CRISPR 相关 (Cas) 系统为在特定基因组位点快速有效地进行基因编辑打开了一扇有希望的窗口。5,6 CRISPR/Cas9 系统由两个组件组成:向导 RNA (gRNA) 和 Cas9 蛋白。Cas9 蛋白的核酸酶活性可在任何被 gRNA 识别的基因组区域中诱导 DNA 双链断裂 (DSB)。该 gRNA 必须伴随目标基因座中相邻的原间隔基序 (PAM) 序列。7,8 NGG 是化脓性链球菌 Cas9 (SpCas9) 的 PAM 序列,是最
每子房胚珠数 (ONPO) 决定了每果种子数的最大潜力,而种子数是作物种子产量的直接组成部分。本研究旨在利用新开发的油菜双单倍体 (DH) 群体剖析 ONPO 的遗传基础和分子机制。在所有四个研究环境中,201 个 DH 品系的 ONPO 呈正态分布,变化范围从 22.6 到 41.8,表明数量遗传适合于 QTL 定位。开发了 19 个连锁群内 2111 个标记的骨架遗传图谱,总长度为 1715.71 cM,标记间平均为 0.82 cM。连锁图谱鉴定出 10 个 QTL,分布在 8 条染色体上,解释 7.0-15.9% 的表型变异。其中四个与报道的相同,两个被重复检测到且影响相对较大,凸显了它们在标记辅助选择中的潜力。高、低 ONPO 品系两库子房(胚珠起始阶段)的植物激素定量分析显示,九种亚型植物激素的水平存在显著差异,表明它们在调节胚珠数量方面发挥着重要作用。转录组分析鉴定出两库之间 7689 个差异表达基因 (DEG),其中近一半富集到已报道的调控 ONPO 基因的功能类别中,包括蛋白质、RNA、信号传导、杂项、发育、激素代谢和四吡咯合成。整合连锁 QTL 作图、转录组测序和 BLAST 分析,鉴定出已报道的胚珠数基因的 15 个同源物和 QTL 区域中的 327 个 DEG,这些被视为直接和潜在的候选基因。这些发现进一步加深了对ONPO遗传基础和分子机制的认识,将有助于未来基因克隆和遗传改良,从而提高油菜种子产量。
摘要。– 目的:2 型糖尿病 (T2DM) 和多囊卵巢综合征 (PCOS) 是常见的内分泌系统疾病。然而,在转录组水平上对 T2DM 和 PCOS 的分子机制研究仍然很少。因此,我们旨在通过生物信息学分析揭示 T2DM 和 PCOS 之间潜在的共同遗传和分子途径。材料与方法:我们从美国国家生物技术信息中心的基因表达综合 (GEO) 数据库下载了 T2DM 和 PCOS 的 GSE10946 和 GSE18732 数据集。对这些数据集进行综合差异和加权基因共表达网络分析 (WGCNA) 以筛选共同基因。随后进行功能富集和疾病基因关联分析,构建转录因子 (TF)-基因和TF-miRNA-基因调控网络,最终确定相关的靶向药物。结果:我们鉴定了T2DM和PCOS的共同基因(BIRC3,DEPTOR,TNNL3,ADRA2A)。通路富集分析显示共同基因在平滑肌收缩,通道抑制剂活性,细胞凋亡和肿瘤坏死因子 (TNF) 信号通路中富集。SP7,KLF8,HCFC1,IRF1和MLLT1等TF在TF调控网络中起关键作用。奥利司他被指出是一种重要的基因靶向药物。
S.列I S.No. 第二列A A配子融合I IVF B卵的过程是在此处产生的II II testes C C C在Hydra III受精的侧面观察到的凸起术语D Amoeba IV IV iv iv b芽中的一种类型的裂变,用于在这些体外生育的卵形卵形vi bevary ovary firiarization vi ovary firical vi bronion vi brodans vi brodans vi brodans vi brodans vi birod列I S.No.第二列A A配子融合I IVF B卵的过程是在此处产生的II II testes C C C在Hydra III受精的侧面观察到的凸起术语D Amoeba IV IV iv iv b芽中的一种类型的裂变,用于在这些体外生育的卵形卵形vi bevary ovary firiarization vi ovary firical vi bronion vi brodans vi brodans vi brodans vi brodans vi birod
背景:多囊卵巢综合征 (PCOS) 影响着全球育龄妇女,发病率为 5% - 26%。越来越多的证据表明,微小 RNA (miRNA) 在 PCOS 的颗粒细胞 (GC) 病理生理中发挥着重要作用。目的:本研究的目的是通过分析三个不同的微阵列数据集,确定枢纽基因-miRNA 网络中差异表达最显著的 miRNA (DE-miRNA) 及其相应的靶标,并识别新的 DE-miRNA。此外,还使用生物信息学方法进行了功能富集分析。最后,研究了排名前 5 位的枢纽基因与药物之间的相互作用。方法:使用生物信息学方法,分析了基因表达总集 (GEO) 中的三个 GC 谱,即基因表达总集系列 (GSE)-34526、GSE114419 和 GSE137684。使用 multiMiR R 包预测排名靠前的 DE-miRNA 的靶标,并且仅检索具有验证结果的 miRNA。将“DE-miRNA 预测结果”和“现有组织 DE-mRNA”之间共同的基因指定为差异表达基因 (DEG)。对 DEG 实施了基因本体 (GO) 和通路富集分析。为了识别枢纽基因和枢纽 DE-miRNA,使用 Cytoscape 软件构建了蛋白质-蛋白质相互作用 (PPI) 网络和 miRNA-mRNA 相互作用网络。利用药物-基因相互作用数据库 (DGIdb) 数据库来识别排名靠前的枢纽基因与药物之间的相互作用。结果:从 GSE114419 和 GSE34526 微阵列数据集中检索到的前 20 个 DE-miRNA 中,只有 13 个通过 multiMiR 预测方法具有“验证结果”。在研究的 13 个 DE-miRNA 中,只有 5 个,即 hsa-miR-8085 、 hsa-miR-548w 、 hsa-miR-612 、 hsa-miR-1470 和 hsa-miR-644a,与我们研究中的枢纽基因-miRNA 网络中的 10 个枢纽基因表现出相互作用。除 hsa-miR-612 外,其他 4 个 DE-miRNA,包括 hsa-miR-8085 、 hsa-miR-548w 、 hsa-miR-1470 和 hsa-miR-644a ,都是新发现的,之前尚未在 PCOS 发病机制中报道过。此外,GO 和通路富集分析将京都基因和基因组百科全书 (KEGG) 中的“致病性大肠杆菌感染”和 FunRich 中的“调节 Rac1 活性”确定为主要通路。药物中心基因相互作用网络确定 ACTB 、 JUN 、 PTEN 、 KRAS 和 MAPK1 是使用治疗药物治疗 PCOS 的潜在靶点。结论:本研究结果可能有助于研究人员发现 PCOS 治疗中的新生物标志物和潜在治疗药物靶点。
妇科癌症的治疗历来都是根据其推测的起源部位,而不考虑其潜在的组织学 [1]。众所周知,初始表现、自然病史和治疗反应会因组织学亚型的不同而有很大差异 [2]。对这些癌症进行严格的病理学研究和公正的基因组分析,正在阐明这些不同恶性肿瘤的潜在生物学。妇科透明细胞癌 (CCC) 就是这样一种罕见的组织学亚型。与其他更常见的亚型相比,透明细胞组织学与化疗难治性和较差的生存率有关 [3, 4]。从流行病学角度来看,CCC 与子宫内膜异位症病史有关,无论其起源部位如何,都表现出相似的肿瘤基因组图谱 [5–7]。 CCC 以及子宫内膜异位症相关子宫内膜样癌的基因组研究发现,肿瘤抑制基因 AT 富集相互作用域蛋白 1A (ARID1A) 的体细胞突变发生率很高 [6]。ARID1A 基因编码 BAF250a (ARID1A),该蛋白形成几种不同的 ATP 依赖性染色质重塑 SWItch/蔗糖不可发酵 (SWI/SNF) 蛋白复合物的亚基 [8]。SWI/SNF 复合物是一种表观遗传调节剂,在细胞凋亡过程中起着重要作用。
背景:高钙血症型卵巢小细胞癌 (SCCOHT) 是一种罕见但高度未分化的侵袭性恶性肿瘤,主要影响年轻女性。大多数 SCCOHT 患者表现出晚期疾病并且预后很差。尽管已经提出了几种治疗方案,但是对于最佳治疗策略尚无共识。病例:本文,我们描述了三例年龄在 16 至 36 岁之间的晚期 SCCOHT 病例,这些病例接受了细胞减灭手术和化疗,联合或不联合免疫检查点阻断治疗。采用不同的治疗策略,患者显示出完全不同的结果。结论:这些病例强调了及时诊断以及早期、积极和综合治疗 SCCOHT 的重要性。我们相信,改进的治疗方法可以让更多年轻的 SCCOHT 患者存活下来。
图2杀死CHO-K1细胞的摇瓶中的曲线,抗生素尿霉素的浓度不同。实验总共进行了四个重复。每隔第二天(用黑色箭头表示)通过离心和在新鲜培养基中与补充纯嘌呤霉素重悬于细胞分离中。(a)描绘的是由Kuhner Tom设备确定的氧转移速率(OTR)。为了清楚起见,随着时间的推移,每个第十二个测量点都被标记为符号。在从数据中删除了由于温度适应引起的每个介质交换后,OTR数据中的单个Outliner。有关原始数据,请参阅图S2A。两个在线监视的生物学重复用实线和填充符号或虚线和开放符号表示。(b)离线培养了另外两种生物学重复。离线分析的生物学重复被描述为固体和填充的符号或虚线和开放符号。通过离线摇瓶通过Neubauer室法在每个培养基交换处确定可行的细胞密度(VCD)。(c)可行性是从相同样品中计算出来的。在Kuhner Tom设备中进行培养。培养条件:100 ml玻璃瓶,温度(T)= 36.5 C,摇动频率(n)= 140 rpm,摇动直径(D 0)= 50 mm,填充体积(V L)= 20 ml,5%CO 2,70%rel。哼。启动细胞密度:5 10 5细胞/mL。
背景:CHO 细胞是生产生物制药的首选,而基因组编辑技术为提高重组蛋白产量提供了机会。靶向凋亡相关基因,如 Caspases 8 相关蛋白 2 (CASP8AP2),可提高 CHO 细胞的活力和生产力。将强大的策略与 CRISPR-Cas9 系统相结合使其能够应用于 CHO 细胞工程。目标:本研究旨在开发一种经济有效的方案,使用 CRISPR-Cas9 系统结合 HITI 策略同时在 CHO 细胞中缺失/插入 CASP8AP2 基因,并评估其对细胞活力和蛋白质表达的影响。材料和方法:我们通过将 CRISPR/Cas9 与 HITI 策略相结合,开发了一种有效的 CHO 细胞工程方案。使用 CHOPCHOP 软件设计了两个不同的 sgRNA 序列以靶向 CASP8AP2 基因的 3' UTR 区域。使用经济高效的 PEI 试剂将 gRNA 克隆到 PX459 和 PX460-1 载体中,并转染到 CHO 细胞中。采用手动选择系统简化单细胞克隆过程。MTT 测定评估 24、48 和 72 小时的基因沉默和细胞活力。流式细胞术评估 CASP8AP2 沉默的 CHO 细胞中的蛋白质表达。结果:研究证实了将 CRISPR-Cas9 与 HITI 策略相结合的稳健性,在产生敲除克隆方面实现了 60% 的高效率。PEI 转染成功地将构建体传递给近 65% 的克隆,其中大多数是纯合的。该方案被证明适用于资源有限的实验室,只需要倒置荧光显微镜。 CASP8AP2 敲除 (CHO-KO) 细胞经 NaBu 处理后,与 CHO-K1 细胞相比,其细胞存活率显著延长,48 小时时的 IC50 值分别为 7.28 mM 和 14.25 mM(P 值:24 小时 ≤ 0.0001,48 小时 ≤ 0.0001,P 值:72 小时 = 0.0007)。与天然细胞相比,CHO CASP8AP2 沉默细胞的 JRed 表达增加了 1.3 倍。结论:使用 CRISPR-Cas9 和 HITI 策略有效改造 CHO 细胞,同时进行 CASP8AP2 基因缺失/插入,从而提高细胞存活率和蛋白质表达。