[1] Xavier Besseron、Alban Rousset、Alice Peyraut 和 Bernhard Peters。2021 年。使用 preCICE 在 XDEM 和 OpenFOAM 之间进行欧拉-拉格朗日动量耦合。在第 14 届 WCCM 和 ECCOMAS 大会 2020 上。[2] Christian Bruch、Bernhard Peters 和 Thomas Nussbaumer。2003 年。固定床条件下的木材燃烧建模。Fuel 82(2003 年)。https://doi.org/10.1016/S0016-2361(02)00296-X [3] José María Cela、Philippe OA Navaux、Alvaro LGA Coutinho 和 Rafael Mayo-García。2016 年。促进能源研究和技术开发方面的合作,应用新的百亿亿次 HPC 技术。在第 16 届 IEEE/ACM 国际集群、云和电网计算研讨会 (CCGrid) 上。https://doi.org/10.1109/CCGrid.2016.51 [4] Tao Chen、Xiaoke Ku、Jianzhong Lin 和 Hanhui Jin。2019 年。热厚生物质颗粒燃烧建模。Powder Technology 353 (2019)。 https://doi.org/10.1016/j.powtec.2019.05.011 [5] Gerasimos Chourdakis、Kyle Davis、Benjamin Rodenberg、Miriam Schulte、Frédéric Simonis、Benjamin Uekermann、Georg Abrams、Hans-Joachim Bungartz、Lucia Cheung Yau、Ishaan Desai、Konrad Eder、Richard Hertrich、Florian Lindner、Alexander Rusch、Dmytro Sashko、David Schneider、Amin Totounferoush、Dominik Volland、Peter Vollmer 和 Oguz Ziya Koseomur。 2021. preCICE v2:可持续且用户友好的耦合库。 ArXiv210914470 Cs (2021)。 [6] 艾汉·德米尔巴斯。 2005. 可再生能源的潜在应用、锅炉动力系统中的生物质燃烧问题以及燃烧相关的环境问题。能源与燃烧科学进展 31 (2005)。https://doi.org/10.1016/j.pecs.2005.02.002 [7] Andrea Dernbecher、Alba Dieguez-Alonso、Andreas Ortwein 和 Fouzi Tabet。2019. 基于计算流体动力学的生物质燃烧系统建模方法综述。生物质转化生物参考。9 (2019)。https://doi.org/10.1007/s13399-019-00370-z
如今,由于其多种应用,场景文本识别引起了越来越多的关注。大多数最先进的方法都采用带有注意机制的编码器框架,从左到右生成文本。尽管表现令人信服,但这种顺序解码策略限制了推理速度。相反,非自动回归模型提供了更快的同时预测,但通常会牺牲准确性。尽管使用明确的语言模型可以提高性能,但它会负担计算负载。此外,将语言知识与视觉信息分开可能会损害最终预测。在本文中,我们提出了一种替代解决方案,该解决方案使用平行且迭代的解码器,该解码器采用了简单的解码策略。此外,我们将文本识别视为基于图像的条件文本生成任务,并利用离散扩散策略,确保对双向上下文信息的详尽探索。广泛的实验表明,所提出的方法在基准数据集(包括中文和英语文本图像)上取得了卓越的结果。
皮质神经发生遵循一个简单的谱系:顶端radial胶质细胞(RGC)产生基础祖细胞,这些产生神经元。在具有扩展的生发区域和折叠皮层(例如人类)的物种中,这种情况如何发生。我们使用了来自雪貂和条形码谱系跟踪中单个皮质生发区域的单细胞RNA测序来确定祖细胞及其谱系的分子多样性。我们确定了启动并行谱系的多个RGC类,并收敛到一类新生神经元。平行的RGC类和转录组轨迹在生发区域重复,并在雪貂和human中保守,但在小鼠中不保守。神经元遵循回旋和沟中的平行分化轨迹,具有人类皮质畸形基因的表达不同。祖细胞谱系多重性在折叠的哺乳动物大脑皮层中保守。
运动图像(MI)脑电图(EEG)分类是脑机构界面(BCI)的重要组成部分,使具有流动性问题的人可以通过辅助设备与外界进行通信。但是,由于其复杂性,动态性质和低信噪比,EEG解码是一项艰巨的任务。设计一个充分提取EEG信号的高级特征的端到端框架仍然是一个挑战。在这项研究中,我们提出了一个平行的空间 - 暂时性自我注意力,用于四级MI EEG信号分类。这项研究是定义原始脑电图信号的新时空表示的第一个研究,该信号使用自我注意力的机制提取可区分的时空特征。特别是,我们使用空间自我注意模块来捕获MI EEG信号通道之间的空间依赖性。此模块通过通过加权求和在所有通道上汇总特征来更新每个通道,从而提高了分类准确性并消除由手动通道选择引起的伪像。此外,时间自我发项模块将全局时间信息编码为每个采样时间步骤的特征,因此可以在时域中提取MI EEG信号的高级时间特征。定量分析表明,我们的方法优于主体内和受试者间分类的最先进方法,证明其稳健性和有效性。最后,采用提出的方法根据脑电图信号实现对无人机的控制,从而验证其在实时应用中的可行性。在定性分析方面,我们对从学到的架构估算的新时空表示形式进行视觉检查。
图 6 塑料表面的 (a) MS 1 和 (b)、(c) MS 2 光谱。分别选择 (b) m/z 304 和 (c) m/z 481 作为母体离子,获得 MS 2 子离子光谱。
摘要 CRISPR-Cas9 基因组工程彻底改变了高通量功能基因组筛选。然而,最近的研究引起了人们对使用 TP53 野生型人类细胞进行 CRISPR-Cas9 筛选的性能的担忧,因为 p53 介导的 DNA 损伤反应 (DDR) 限制了生成可行编辑细胞的效率。为了直接评估细胞 p53 状态对 CRISPR-Cas9 筛选性能的影响,我们使用针对 852 个 DDR 相关基因的聚焦双向导 RNA 文库在野生型和 TP53 敲除人类视网膜色素上皮细胞中进行了并行 CRISPR-Cas9 筛选。我们的工作表明,尽管功能性 p53 状态对显著耗竭基因的识别有负面影响,但最佳筛选设计仍然可以实现强大的筛选性能。通过分析我们自己的和已发表的筛选数据,我们强调了在野生型和 p53 缺陷细胞中成功筛选的关键因素。
。CC-BY 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。此版本的版权持有者于 2020 年 2 月 20 日发布。;https://doi.org/10.1101/2020.02.20.957746 doi: bioRxiv preprint
签名和验证过程。我们为 SPHINCS+ 提出了一种适应性并行化策略,分析其签名和验证过程以确定高效并行执行的关键部分。利用 CUDA,我们执行自下而上的优化,重点关注内存访问模式和超树计算,以提高 GPU 资源利用率。这些努力与内核融合技术相结合,显著提高了吞吐量和整体性能。大量实验表明,我们优化的 SPHINCS+ CUDA 实现具有卓越的性能。具体而言,与最先进的基于 GPU 的解决方案相比,我们的 GRASP 方案可将吞吐量提高 1.37 倍到 3.45 倍,并比 NIST 参考实现高出三个数量级以上,凸显了显著的性能优势。
电源电压,V DD1 、V DD2 和 V DD3 (见注 1) 6.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .输出电压范围,VO −0.3 V 至 V DD + 0.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 峰值输入电流(任何数字输入) ± 10 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .峰值总输入电流(所有输入)± 30 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 工作自然通风温度范围,TA:TLC1550I,TLC1551I −40 ° C 至 85 ° C . . . . . . . . . . . . . . . . . . . . TLC1550M −55 ° C 至 125 ° C . . . . . . . . . . . . . . . . . . . 存储温度范围,T stg −65 ° C 至 150 ° C . . . . . . . . . . . . . . . . . . . . . 10 秒外壳温度:FK 或 FN 封装 260 ° C . . . . . . . . . . . . . . . ..................................................................................................................................... 距外壳 1.6 毫米(1/16 英寸)处的引线温度持续 10 秒:J 或 NW 封装 260 °C ....................................................................................................................................