签名和验证过程。我们为 SPHINCS+ 提出了一种适应性并行化策略,分析其签名和验证过程以确定高效并行执行的关键部分。利用 CUDA,我们执行自下而上的优化,重点关注内存访问模式和超树计算,以提高 GPU 资源利用率。这些努力与内核融合技术相结合,显著提高了吞吐量和整体性能。大量实验表明,我们优化的 SPHINCS+ CUDA 实现具有卓越的性能。具体而言,与最先进的基于 GPU 的解决方案相比,我们的 GRASP 方案可将吞吐量提高 1.37 倍到 3.45 倍,并比 NIST 参考实现高出三个数量级以上,凸显了显著的性能优势。