自然生态系统转化为人类修饰的景观(HML)是陆地生态系统中生物多样性丧失的主要驱动力,尤其是大型捕食者的丧失。他们的灭亡会大大改变食物网,有时会释放出较小的食肉动物,例如野马科的成员。尽管如此,即使是小食肉动物也必须适应人类对候对食物的可用性的影响,从而改变其资源使用。在这种情况下,在农业栖息地种植的农作物会深刻影响社区集会。在这里,我们对2017年7月至2018年8月之间收集的75个日本鼬鼠(Mustela Itatsi)Scats进行了饮食分析,以确定其季节性饮食习惯,该景观由日本东部西部帕迪田(Rice Paddy Fields)占据主导地位。从春季到秋天,日本鼬鼠主要消耗(半)水生和限制动物分类群,特别是侵入性小龙虾(Procambarus clarkii),昆虫(例如,鞘翅目和odonata)以及成年的阿努拉(Anurans)以及所有这些都是易于使用的宠物。在冬季,japanese鼬鼠主要消耗了果实(例如,无花果,五库里卡),由于干燥的稻田和灌溉沟渠中动物猎物缺乏动物猎物的稀缺,因此在SCAT的组合含量相对减少。尽管节俭在芥末饮食中是不寻常的,但我们的发现表明,日本的奶奶酪能够自适应营养可塑性,使它们能够在稻田栖息地中生存在非典型的资源条件下。为了加强在日本保护Mustela Itatsi的广泛努力,我们建议稻米单一培养物的多样化,并鼓励冬季洪水增加水生和半养生动物猎物的可用性。
联合学习(FL)促进了客户在培训共享的机器学习模型的情况下合作,而无需公开各个私人数据。尽管如此,FL仍然容易受到效用和隐私攻击的影响,特别是逃避数据中毒和建模反演攻击,从而损害了系统的效率和数据隐私。现有的范围通常专门针对特定的单一攻击,缺乏普遍性和全面的防守者的观点。为了应对这些挑战,我们介绍了f ederpography d efense(FCD),这是一个统一的单框架,与辩护人的观点保持一致。FCD采用基于行的转座密码加密,并使用秘密钥匙来对抗逃避黑框数据中毒和模型反转攻击。FCD的症结在于将整个学习过程转移到加密的数据空间中,并使用由Kullback-Leibler(KL)差异引导的新型蒸馏损失。此措施比较了本地预审最终的教师模型对正常数据的预测以及本地学生模型对FCD加密形式相同数据的预测的概率分布。通过在此加密空间中工作,FCD消除了服务器上的解密需求,从而导致了计算复杂性。我们证明了FCD的实践可行性,并将其应用于对基准数据集(GTSRB,KBTS,CIFAR10和EMNIST)上的Evasion实用程序攻击。我们进一步扩展了FCD,以抵御CI-FAR100数据集中的Split FL中的模型反转攻击。与第二最佳方法相比,我们在各种攻击和FL设置中进行的实验表明了对效用逃避(影响> 30)和隐私攻击(MSE> 73)的实际可行性和巨大性。
随着量子计算机的日新月异,对隐私构成威胁,大整数分解和离散对数等数学难题将通过 Shor 算法被破解。这将使广泛使用的密码系统过时。由于量子计算的进步,后量子密码学最近大受欢迎。因此,2016 年,美国国家标准与技术研究所 (NIST) 启动了一项标准化流程,以标准化和选择能够抵御量子计算机攻击的加密算法和方案,称为后量子密码学。标准化过程始于 69 份密钥封装机制 (KEM) 和数字签名 (DS) 的提交。4 年后,该流程已进入第三轮(也是最后一轮),有 7 个最终候选方案,其中 4 个是 KEM(CRYSTALS-Kyber、SABER、NTRU、Classic McEliece),其余 3 个提交是 DS(CRYSTALS-Dilithium、FALCON、Rainbow)。标准化过程大部分向公众开放,NIST 要求研究人员从理论和实施的角度研究提交的内容,以确定所提议候选方案的优点和缺点。
液体分析是跟踪食品、饮料和化学制造等行业是否符合严格的工艺质量标准的关键。为了在线并在最感兴趣的点分析产品质量,自动监控系统必须满足小型化、能源自主性和实时操作方面的严格要求。为了实现这一目标,我们介绍了在神经形态硬件上运行的人工味觉的第一个实现,用于连续边缘监控应用。我们使用固态电化学微传感器阵列来获取多变量、随时间变化的化学测量值,采用时间滤波来增强传感器读出动态,并部署基于速率的深度卷积脉冲神经网络来有效融合电化学传感器数据。为了评估性能,我们创建了 MicroBeTa(微传感器味道测试),这是一个用于饮料分类的新数据集,包含 3 天内进行的 7 小时时间记录,包括传感器漂移和传感器更换。我们实现的人工品味在推理任务上的能效比在其他商用低功耗边缘 AI 推理设备上运行的类似卷积架构高出 15 倍,在 USB 棒外形尺寸中包含的单个英特尔 Loihi 神经形态研究处理器上实现了比传感器读数采样周期低 178 倍以上的延迟和高精度(97%)。
我是一名科学家。我帮助开创了量子计算和现代开放科学运动。我对人工智能也有浓厚的兴趣。所有这些都是我对帮助人们发现和创造的系统和工具的更广泛兴趣的一部分,无论是个人还是集体。我对量子计算的兴趣始于 1992 年。我在这个领域最为人所知的身份可能是与 Ike Chuang (麻省理工学院) 合著的《量子计算标准文本》。这是过去 30 年物理学中被引用次数最多的著作,也是物理学史上被引用次数最多的十部著作之一(基于截至 2015 年左右的 Google Scholar 数据)。我对量子计算方面的三项研究贡献特别感到自豪:(1) 控制纠缠量子态操纵的基本定理;这引发了人们对主要化数学及其与量子力学的关系的广泛兴趣;(2) 将量子计算重新表述为一种在非常高维弯曲空间中的测地线运动;这项工作目前正在接受量子引力研究人员的深入研究,他们利用它来理解黑洞; (3) 发现和早期开发量子计算的光簇状态方法,目前由 PsiQuantum 公司研究(最新一轮融资额约为 2.3 亿美元)。其他贡献包括参与开发量子门隐形传态、量子过程层析成像(用于实验性地表征量子门)以及最早的量子隐形传态实验之一,该实验被《科学》杂志评为 1998 年度十大突破之一。作为这项工作的一部分,我与他人共同创立并指导了量子信息科学计划,担任昆士兰大学量子信息科学基础教授。当时,它是南半球最大的以理论为重点的量子计算小组,也是世界上最大的量子计算小组之一,成员人数不断增加,目前大约有 30 人(教师、博士后、学生)。更广泛地说,通过招聘、指导和会议,我帮助澳大利亚发展成为世界领先的量子计算国家之一。虽然量子计算通常被认为是一种有前途的技术,但这并不是激发我兴趣的原因。我对计算机很着迷,因为它是一种表示和运用知识的手段,可以执行我们称之为人类认知的过程。量子计算机强烈地挑战我们去理解这些过程的根本限制。从历史上看,另一条研究路线也探讨了同样的问题,尽管角度截然不同。在 20 世纪 60 年代和 70 年代,道格拉斯·恩格尔巴特 (Douglas Engelbart)、伊万·萨瑟兰 (Ivan Sutherland) 和艾伦·凯 (Alan Kay) 等早期的计算研究人员开始将计算机设想为增强人类认知的工具。他们开发了许多最强大的想法,这些想法构成了现代用户界面的基础,这些工具扩展了人类的创造力和发现能力。受这些想法的启发,在 20 世纪 90 年代,我对互联网的承诺感到兴奋,它有助于改变科学研究的方式——通过新的工具进行协作,共享数据、代码和想法,以新的方式创造意义。我看到这个承诺在开源编程社区内迅速实现。但很明显,许多障碍阻碍了科学界的这一目标。科学已经开发了一些强大的知识共享系统和规范(例如期刊文章),但也有许多系统在关键方面(例如数据、软件和工具,以及在发现中往往至关重要的隐性知识)对共享的激励作用较弱或完全不鼓励共享。
肌萎缩性侧索硬化症也称为ALS或Lou Gehrig氏病是一种致命的神经退行性疾病,其特征是脊髓和大脑中神经细胞的进行性变性。als可以说是影响神经和肌肉功能的疾病最具灾难性的,因为它无法治愈。
现实世界的传感处理应用需要紧凑、低延迟和低功耗的计算系统。混合忆阻器-互补金属氧化物半导体神经形态架构凭借其内存事件驱动计算能力,为此类任务提供了理想的硬件基础。为了展示此类系统的全部潜力,我们提出并通过实验演示了一种用于现实世界对象定位应用的端到端传感处理解决方案。从仓鸮的神经解剖学中汲取灵感,我们开发了一种生物启发的事件驱动对象定位系统,将最先进的压电微机械超声换能器传感器与基于神经形态电阻式存储器的计算图结合在一起。我们展示了由基于电阻式存储器的巧合检测器、延迟线电路和全定制超声传感器组成的制造系统的测量结果。我们使用这些实验结果来校准我们的系统级模拟。然后使用这些模拟来估计对象定位模型的角度分辨率和能量效率。结果揭示了我们的方法的潜力,经评估,其能量效率比执行相同任务的微控制器高出几个数量级。