摘要:提出并评估了一种超低水平光检测模块——时间相关光子计数器,用于荧光分析。时间相关光子计数器采用硅光电倍增管作为光子计数传感器,结合泊松统计算法和双时间窗技术,可以准确计数光子数。时间相关光子计数器与时间相关单光子计数技术兼容,可以记录非常微弱的光信号的到达时间。利用这种低成本、紧凑的仪器分析了异硫氰酸荧光素的强度和寿命,获得了16 pg/ml的检测限,线性动态范围从2.86 pg/ml到0.5 µ g/ml,测得异硫氰酸荧光素的寿命为3.758 ns,与先进的商用荧光分析仪的结果一致。时间相关的光子计数器可能在即时诊断等应用中很有用。
量子通信背景:二维材料中的单光子发射器 (SPE) 已成为量子技术和量子通信的有前途的平台。这些发射器能够产生单个光子,这对于安全通信、量子计算和其他需要操纵量子态的应用至关重要。过渡金属二硫属化物 (TMD) 等二维材料由于其原子级薄性质、强激子效应以及与其他量子器件集成的潜力,为实现 SPE 提供了独特的环境。在这些材料中,缺陷、应变和局部激子可以捕获电子和空穴,从而导致单光子的发射。此外,二维材料提供可调的电子和光学特性,可以更好地控制发射特性,例如波长和偏振。此外,基于二维材料的 SPE 的可扩展性和与现有光子和光电器件的集成使其成为未来量子技术的有力候选者。
自2001年首次示威以来[Gol'tsman等。,应用。物理。Lett。 79,705–707(2001)],超导纳米线单光子探测器(SNSPDS)见证了二十年的伟大发展。 SNSPD是大多数现代量子光学实验中的选择检测器,并且正在慢慢地进入其他光子含有光学的光学领域。 到目前为止,在几乎所有实验中,SNSPD都被用作“二进制”检测器,这意味着它们只能区分0和> = 1个光子,并且丢失了光子数信息。 最近的研究表明,原理证明光子数分辨率(PNR)SNSPDS计数为2-5个光子。 在各种量子式实验中,高度要求光子数分解的能力,包括Hong – Ou-Mandel干扰,光子量子计算,量子通信和非高斯量子态制备。 特别是,由于高质量的半导体量子点(QDS)的可用性,波长850-950 nm处的PNR检测器引起了极大的关注[Heindel等。 ,adv。 选择。 Photonics 15,613–738(2023)]和高性能基于铯的量子记忆[Ma等。 ,J。Opt。 19,043001(2017)]。 在本文中,我们演示了基于NBTIN的SNSPD,具有> 94%的系统检测效率,一个光子的低于11 PS的时间抖动,以及2个光子的低于7 PS。 更重要的是,我们的探测器使用常规的低温电读数电路最多可以解决7个光子。Lett。79,705–707(2001)],超导纳米线单光子探测器(SNSPDS)见证了二十年的伟大发展。 SNSPD是大多数现代量子光学实验中的选择检测器,并且正在慢慢地进入其他光子含有光学的光学领域。 到目前为止,在几乎所有实验中,SNSPD都被用作“二进制”检测器,这意味着它们只能区分0和> = 1个光子,并且丢失了光子数信息。 最近的研究表明,原理证明光子数分辨率(PNR)SNSPDS计数为2-5个光子。 在各种量子式实验中,高度要求光子数分解的能力,包括Hong – Ou-Mandel干扰,光子量子计算,量子通信和非高斯量子态制备。 特别是,由于高质量的半导体量子点(QDS)的可用性,波长850-950 nm处的PNR检测器引起了极大的关注[Heindel等。 ,adv。 选择。 Photonics 15,613–738(2023)]和高性能基于铯的量子记忆[Ma等。 ,J。Opt。 19,043001(2017)]。 在本文中,我们演示了基于NBTIN的SNSPD,具有> 94%的系统检测效率,一个光子的低于11 PS的时间抖动,以及2个光子的低于7 PS。 更重要的是,我们的探测器使用常规的低温电读数电路最多可以解决7个光子。79,705–707(2001)],超导纳米线单光子探测器(SNSPDS)见证了二十年的伟大发展。SNSPD是大多数现代量子光学实验中的选择检测器,并且正在慢慢地进入其他光子含有光学的光学领域。到目前为止,在几乎所有实验中,SNSPD都被用作“二进制”检测器,这意味着它们只能区分0和> = 1个光子,并且丢失了光子数信息。最近的研究表明,原理证明光子数分辨率(PNR)SNSPDS计数为2-5个光子。在各种量子式实验中,高度要求光子数分解的能力,包括Hong – Ou-Mandel干扰,光子量子计算,量子通信和非高斯量子态制备。特别是,由于高质量的半导体量子点(QDS)的可用性,波长850-950 nm处的PNR检测器引起了极大的关注[Heindel等。,adv。选择。Photonics 15,613–738(2023)]和高性能基于铯的量子记忆[Ma等。,J。Opt。19,043001(2017)]。在本文中,我们演示了基于NBTIN的SNSPD,具有> 94%的系统检测效率,一个光子的低于11 PS的时间抖动,以及2个光子的低于7 PS。更重要的是,我们的探测器使用常规的低温电读数电路最多可以解决7个光子。通过理论分析,我们表明,通过提高我们读取电路的信噪比和带宽,可以进一步改善所证明的检测器的PNR性能。我们的结果对于光学量子计算和量子通信的未来都是有希望的。
使用高级光子源(AP)基于Web的系统,研究人员必须通过准备和提交实验安全评估表(ESAF)来定义APS的实验活动范围。提交的ESAF将生成实验危害控制计划(EHCP)。ESAF识别与实验相关的材料,设备,过程和危害。EHCP确定了减轻危害到可接受的风险水平所需的所有控件,并定义了ESAF的工作范围。APS的工作人员和非助长者研究人员必须遵循本政策和程序中所述的实验评估和批准过程,用于在X-Ray Beamine和APS的其他实验设施(例如实验室)上进行的实验。为了本政策和程序的目的,该组织负责该设施的日常运营,其中实验称为实验操作管理。实验操作管理包括协作访问团队(CAT)和APS XSD组。实验操作管理和APS实验安全审查委员会(ESRB)作为审查过程中的合作伙伴一起工作,以确保在APS维护安全的工作环境。一个实验不能没有:
- 可以使用MLCS实现。- 每个光束仅处理目标的一部分 - 可以通过标准的“正向”或反迭代方法来计划 - 给出更高的自由度,并可能更宽松的剂量
将介绍在Polimi开发的医学成像应用中开发的ASIC。sipms读数的整体闪烁体读数允许伽马射线的光谱和相互作用测量位置,这也可以在模拟通道中的主动增益控制机理,在较大的动态范围内。尤其是在迅速-gamma测量中应用剂量治疗中的剂量验证。新的Anna ASIC实现了一个集成的神经网络,该神经网络直接处理从检测器的模拟信号,朝着闪烁体中相互作用的伽马射线位置的芯片重建。
光学量子存储器是现代量子技术中可靠存储和检索量子信息的关键元素。目前,它们在概念上仅限于光波长范围。X 射线量子光学领域的最新进展使得光学量子存储器协议可以扩展到超短波长,从而建立 X 射线能量的量子光子学。在这里,我们介绍了一种 X 射线量子存储器协议,该协议利用机械驱动的核共振 57 Fe 吸收体通过多普勒效应在核吸收谱中形成梳状结构。这种室温核频率梳使我们能够仅使用机械运动就将 X 射线光子波包的波形控制到高精度和高保真度。这种可调、坚固且高度灵活的系统为硬 X 射线的室温紧凑固态量子存储器提供了一个多功能平台。
观察捕获离子的振荡是最先进的量子1和基本2物理实验的必不可少的技术。裸露振荡频率的估计用于提供剩余能量的精确值3原子的估计中微子质量的关键作用。4在精确光谱实验5中还研究了振荡频率的差异,以测量基本颗粒的旋转磁因子,这与QED的测试相关,6,并在物质和反物质之间寻找不对称性。7笔陷阱中的常规方法是检测陷阱电极上离子图像电荷引起的电流。2正在探索新方法,以使用第二离子对运动敏感更高敏感性进行精确测量。8附加离子应具有有利的电子结构,以通过量子逻辑光谱法制备和读取互动的离子特性。9量子逻辑方案需要几个控制的激光脉冲来操纵辅助离子。该离子是通过激光冷却制备的,然后通过使用狭窄的过渡来解决链的运动边带来审问。过去已经探索了依赖散射光的分析的边带光谱进行运动检测的替代技术。10–14这些技术基于
• 偏振纠缠 实现 • 宽带和单独信道纠缠 实现 • 下一步 基于纠缠的 QKD 多用户 QKD 全光纤集成、基于 WDM 的纠缠光子源,面向多用户 QKD