在预测恒星的演化和死亡方面,恒星进化模型的最新进展。我们提出了使用更新的P ARSEC v2.0代码计算的新的恒星进化模型,以获得金属和初始质量的全面和均匀的网格。核反应网络,质量损失处方和元素混合的处理都在P ARSEC v2.0中进行了更新。我们计算了跨越Z = 10-11至Z = 0的13个初始金属性的模型。03,质量范围从2.0m⊙到2000 m,由1100多个库(包括纯模型在内的2100个轨道)组成。对于每条轨道,从预先序列到最先进的早期抗肌肉分支或苏植物前阶段(取决于恒星质量)的进化。在这里,我们描述了轨道的特性及其化学和结构进化。我们计算了最终的命运和残余物质,并为每种金属性建立了质谱,发现合并的黑洞(BH)配对质量质量间隙仅在100至130 m⊙之间。此外,残留质量提供了与观察到的BH质量一致的模型,例如GW190521,Cygnus X-1和Gaia BH3二进制系统的BH质量。我们计算并提供了从恒星风和爆炸性最终命运以及电离光子速率的化学喷射。我们展示了金属性如何影响这些恒星的进化,命运,喷射和电离光子计数。所有模型均可公开可用,可以在P ARSEC数据库中检索。我们的结果表明,与不同代码计算的其他轨道的总体一致性很强,由于混合和质量损失的不同处理,对于非常巨大的恒星(M Zams> 120m⊙)而出现了最显着的差异。与大型麦哲伦云的狼蛛星云中观察到的大量恒星样本的比较表明,我们的轨道很好地重现了主要序列上的大多数恒星。
电磁辐射是太空中丰富的能源,可为行星际和恒星际任务提供温和而持久的推力。微型激光和太阳能推进平台的早期成功证实了它们在近地和深空探索中的潜力,尽管实际实现可靠的光子设备并非易事。出于对太空探索的兴趣,本简短报告概述了这一新兴领域的最新成就。我们重点介绍了几种通过光子-物质相互作用产生推力的光致机制,例如光子压力和烧蚀、光梯度力、光诱导电子发射等,这些机制可能会对太空推进产生技术影响。最后,我们概述了这些机制在实际应用中面临的一些关键挑战和可能的解决方案,并提出了光子推进领域未来发展的分类和指导原则。
•在(𝑥1,𝑦1,𝑧1)处与ABCD平面相交=(0.431 mm,-1.127 mm,0.500 mm); •沿Z(垂直于ABCD和EFGH平面垂直的苍蝇3.75μm) - 这是正确的吗?也请参见下一张幻灯片); •排放荧光光子,= 9.25 keV at(𝑥2,𝑦2,𝑧2)=(0.431 mm,-1.127 mm,0.496 mm); •该荧光光子在(𝑥3,𝑦3,𝑧3)=(0.429毫米,-1.116毫米,0.500 mm)上飞过ABCD; •也就是说,芯片内部荧光光子的“路径”(发射后)仅为𝑥3 -𝑥22 +𝑦3−𝑦2 2 2 +𝑧3−𝑧2 2 =11.8μm; •GAAS中的该𝐸= 9.25 keV光子的吸收系数为23.92 1 mm; •𝑝= 1 -Exp -23.92 1 mm×11.8×10 -3 mm = 0.246; •𝑝gen =统一0,1 = 0.272; •𝑝<𝑝gen⇒无吸收。
纳米光子学中的量子点(QD)耦合已广泛研究量子技术中的各种潜在应用。微型安排也吸引了大量的研究兴趣,因为它使用微型机器人工具来进行精确的受控运动。在这项工作中,我们将荧光QD和磁性纳米颗粒(NP)结合在一起,以实现多功能微生物结构,并通过外部磁场在3D空间中证明了耦合的单光子源(SPS)的操纵。通过使用低一个光子吸收(LOPA)直接激光写作(DLW)技术,在包含单个QD的2D和3D磁电脑器件的制造上是在包含胶体CDSE/CDSE/CDSE QDS,磁铁fe 3 o 4 nps和su-8 photoresist的混合材料上进行的。研究了两种类型的设备,即无接触式和接触式结构,以证明其磁性和光辐射反应。设备中的耦合SP由外部磁场驱动,以在3D流体环境中执行不同的运动。表征了设备中单个QD的光学特性。
摘要 处理具有非经典光子统计的简单有效的光子态源对于实现量子计算和通信协议至关重要。在这项工作中,我们提出了一种创新方法,与以前的提案相比,该方法大大简化了非高斯状态的制备,利用了现代量子光子学工具提供的多路复用功能。我们的提案受到迭代协议的启发,其中多个资源一个接一个地组合在一起以获得高振幅的复杂输出状态。相反,在这里,协议的很大一部分是并行执行的,通过使用沿与所有输入模式部分重叠的模式的单个投影测量。我们表明,我们的协议可用于生成高质量和高振幅的薛定谔猫状态以及更复杂的状态,例如纠错码。值得注意的是,我们的提案可以用实验中可用的资源来实现,突出了它的直接可行性。
用于光子量子比特的长持续时间量子存储器是实现长距离量子网络和中继器的重要组成部分。将光学状态映射到稀土集合中的相干自旋波上是一种特别有前途的量子存储方法。然而,由于所需的自旋波操纵引起的读出噪声,在量子水平上实现长时间存储仍然具有挑战性。在这项工作中,我们应用动态解耦技术和小磁场,在 151 Eu 3 +:Y 2 SiO 5 晶体中实现 20、50 和 100 毫秒的六种时间模式的存储,基于原子频率梳存储器,其中每个时间模式平均包含大约一个光子。通过存储两个时间箱量子比特 20 毫秒来验证存储器的量子相干性,平均存储器输出保真度为 F = (85 ± 2)%,每个量子比特的平均光子数为 μ in = 0.92 ± 0.04。量子比特分析是在存储器读出时完成的,使用我们开发的一种复合绝热读出脉冲。
图6。(a)由DY3+离子和无bragg镜子的单个DY3+掺杂的活性层(参考)激活的微腔的光致发光光谱。插图:激发激光的光谱。(b)与没有bragg镜的参考样品相比,微腔的发光强度的入射角依赖性。
MID-IR波长范围(通常定义为跨度为3至13 µm)覆盖了各种大气气体的分子吸收区域。因此,MID-IR集成光子学,即将复杂和先进的光学功能整合到芯片上,这代表了开发基于光谱的气体检测的紧凑,成本效益的仪器的有希望的途径[1-6]。这些结构通常是用光刻技术制造的,这些技术限制了所得设备的可重新配置和可调性。通过在介电波导顶部涂上额外的层[7],证明了一些修剪后的后处理能力。走得更远,并为这些结构启用真正的后制成调音机制,一种有吸引力的方法是将它们与相变材料(PCM)相结合。这些材料可以可逆地在具有不同光学特性的无定形和晶体相之间切换。常规PCM的众所周知的例子是GE 2 SB 2 TE 5(GST)[8,9]和VO 2 [10-14]。GST由于其出色的特征而引起了强烈的关注,包括其两个阶段(∆ n> 2.5),低切换温度(〜180°C)之间的近红外折射率对比度以及保持其状态而无需任何电源的能力。在电信C波段上运行的许多集成设备,例如光学记忆[15],模式转换器[16],反射调节器[17],环谐振器[18],窄带过滤器[19]或基于GST的相位变速器[20] [20]。然而,尽管不断研究和提高其潜力的努力,但其可用性仍然主要限于要求光的应用
在连续状态中的新结合和在一个光子三角形的pyra-mid中具有两个半实用铅的长期共振,并据报道,一般定理给出了它们的存在条件。金字塔由连接的开环(长度为l)组成。当连续状态存在于状态连续图内时,它们会引起长寿的共振,以构成金字塔的6个开放环的某些修改长度的特定值。这15个使这些长度通过这些长度来调节这些共振。这项工作中获得的结果适当说明了最终系统之间的状态数量保存以及由独立金字塔和半限制铅所构成的参考。这种保护的尊重使得能够找到最终系统的所有状态,其中包括连续体的界限。这是这项工作的原始性之一。另一个新的一般结果20是连续状态和长寿共振的不同束缚集,以及给出其存在条件的定理。这些结果可能会对连续状态,长期共鸣和通信技术改进的界限的一般研究产生重大影响。