由于光伏 (PV) - 电池 (BAT) 系统中发电和负载波动很大,因此电源管理策略变得不可或缺,因为需要 BAT 来维持发电/负载平衡并调节直流总线。事实上,能源管理策略必须考虑系统的极限,即标称 PV/BAT 功率额定值和 BAT 的充电状态 (SOC)。然而,实际使用可能与预期不同,迫使系统达到其极限。本文主要关注应用于示例独立直流微电网的极限控制和能量饱和管理。它包括根据电源的额定值准确地在电源之间分配可变功率负载,包括最小 SOC ' BAT 情况下的再生制动和最大 SOC ' BAT 情况下的电力负载需求的全面供应。此外,直流总线电压作为设计参数被调节到其预定义的水平。详细介绍了所提出的控制算法,并给出了过应力和标称条件下的系统设计。该算法的主要优点是其简单性。通过使用 Matlab/Simulink 和 DSpace 的仿真/实验系统验证和分析了能量饱和管理控制策略的有效性。结果表明,所提出的技术可以智能地管理能量流,从而确保系统在正常模式和饱和模式下正确安全地运行。
摘要。电动三轮车是减少撒哈拉以南非洲二氧化碳排放最有希望的选择之一,其能源需求较低。它们也适合在撒哈拉以南非洲城市化盛行的农村地区运输乘客和货物。缺乏充电基础设施阻碍了三轮车的发展。本文提出了一种在塞内加尔 Thienaba 为电动三轮车设计光伏 (PV) 电池独立快速充电站的方法。使用 Matlab/Simulink 平台设计、建模和仿真了一个由光伏板供电的超快速充电站。这项工作的结果产生了一个峰值功率为 45 kW 的光伏阵列。上午 11 点至下午 2 点之间至少可以为 8 辆三轮车充电。同时,存储系统可以充电至其总电量的 70%。
四元铜银铋碘化合物代表了一类有前途的新型宽带隙 (2 eV) 半导体,可用于光伏和光电探测器应用。本研究利用气相共蒸发法制造 Cu 2 AgBiI 6 薄膜和光伏器件。研究结果表明,气相沉积薄膜的性质高度依赖于加工温度,表现出针孔密度增加,并根据沉积后退火温度转变为四元、二元和金属相的混合物。这种相变伴随着光致发光 (PL) 强度和载流子寿命的增强,以及在高能量 (≈ 3 eV) 下出现额外的吸收峰。通常,PL 增加是太阳能吸收材料的理想特性,但 PL 的这种变化归因于 CuI 杂质域的形成,其缺陷介导的光学跃迁决定了薄膜的发射特性。通过光泵太赫兹探测光谱法,揭示了 CuI 杂质阻碍了 Cu 2 AgBiI 6 薄膜中的载流子传输。还揭示了 Cu 2 AgBiI 6 材料的主要性能限制是电子扩散长度短。总体而言,这些发现为解决铜银铋碘化物材料中的关键问题铺平了道路,并指明了开发环境兼容的宽带隙半导体的策略。
∗ 原文发表于 2022 年 10 月 26 日,作者更正于 2023 年 5 月 31 日发布。如需引用,请引用此作品:Helveston, John, Gang He 和 Michael Davidson。2022 年。“量化全球太阳能光伏供应链的成本节约。”《自然》。612 (7938):83–87。https://doi.org/10.1038/s41586-022-05316-6。† 乔治华盛顿大学工程管理系统工程系,华盛顿特区电子邮件:jph@gwu.edu ‡ 美国纽约州石溪大学工程与应用科学学院技术与社会系,石溪 11794。通讯作者。电子邮件:gang.he@stonybrook.edu § 加利福尼亚大学圣地亚哥分校全球政策与战略学院,美国加利福尼亚州拉霍亚 92093;加利福尼亚大学圣地亚哥分校机械与航空航天工程系,加利福尼亚州拉霍亚。电子邮件:mrdavidson@ucsd.edu
太阳能和风能的使用是能量转化中最可靠的替代方法,该替代方案旨在减少化石燃料由于耗竭以及负面的健康和环境影响而燃烧的。en en regentics中的太阳能技术尤其引起人们的关注,主要是在无法进行的范围内具有很大的潜力[Louwen等,2016]。然而,光伏也在以温带气候条件为特征的国家中传播,其中包括[Zdyb andSzałas,2021年; Ameur等。al,2022]。报告的研究是指代表第一代和第二代光伏技术的单种模块,例如单晶和多晶硅以及薄膜CDTE和CIGS模块。双面太阳能模块的研究和描述较少,但是双面太阳能电池的历史可以追溯到
可再生能源发电,特别是屋顶太阳能光伏 (PV) 系统,预计将在南非未来的能源结构中发挥重要作用。国家政府以及地方政府各市政府正在推出监管激励措施,以促进私营部门采用太阳能光伏系统。这些激励措施包括上网电价、资本补贴和税收优惠。除了监管激励措施外,还有一些非监管驱动因素激励私人业主采用太阳能光伏系统。这些驱动因素包括环境考虑、成本节约、能源安全、租户要求和绿色能源融资。本研究考察了开普敦大都会区私人业主可享受的各种监管激励措施,以推动其采用太阳能光伏系统。开普敦市被选为单个案例研究区域,因为该市通过其监管框架为私人业主采用私人嵌入式发电系统创造了有利环境。该研究考察了适用于住宅和非住宅业主的不同激励措施。该研究还确定了与非监管驱动因素和好处相比,监管激励措施在多大程度上影响了私人业主追求太阳能光伏系统。研究表明,各种监管激励措施对住宅和非住宅业主的影响不同。这些差异影响了监管激励措施在多大程度上激励特定私人业主追求太阳能光伏系统。研究表明,尽管监管激励措施在私人业主的决策过程中发挥着作用,但非监管驱动因素是私人业主追求太阳能光伏系统的主要动机。
光伏 - 热(PVT)概念是一种降低PV模块温度并共同产生热和电能的新方法。这项研究使用氧化铁(Fe 2 O 3)单纳米流体和氧化钛氧化物(Tio 2 -Fe 2 O 3)杂交纳米氟烯类以0.2%和0.3%的浓度评估PVT系统的热和电气进步。对拟议的单一和杂化纳米流体的效果提出并分析了PVT能量和释放效率。研究结果揭示,将0.3%的TIO TIO 2 -Fe 2 O 3纳米复合材料分散到水中已提高了纳米流体的热导率,将Nusselt的数量提高了90.64%,而Fe 2 O 3纳米粒子可实现31.75%。此外,使用TIO 2- Fe 2 O 3-基于0.3%的基于0.3%的纳米流体,与基于Fe 2 O 3的基于Fe 2 O 3的纳米流体相比,PVT的电效率提高了13%,热效率分别提高了44%,分别显示为12%和33%。此外,使用TIO 2 -FE 2 O 3 -FE 2 O 3型杂化纳米流体增强了PVT的电动效率,使用Fe 2 O 3 nanofluid,增强了约13%。相反,与参考碱流体相比,由于纳米流体密度升高,施用TiO 2 -Fe 2 O 3时,压降最大为62.9%。最终,杂化纳米流体对PVT性能的影响比单纳米流体具有出色的影响。但是,需要进一步研究以探索低压下降的成本效益的杂化纳米流体。
近年来,光伏(PV)模块的可靠性一直引起了PV行业的普遍关注。因此,这项工作报告了从包装到安装阶段的186个PV模块的可靠性和降解机制。本文表明,包装阶段之前没有影响PV模块的裂纹或热点,而在±0.3%处观察到的输出功率略有降低。使用标准实践交付了相同的PV模块,并且不考虑进一步的预防措施。在PV安装位点拍摄了所有PV模块的电致(EL)图像,发现2.2%的裂纹进化。取决于裂纹大小,标准测试条件下的估计输出功率损失从0.53%到1.43%不等。此外,安装六个月后,对PV模块进行了热检查。发现热点在所有破裂的PV模块中都发展起来,其温度从10°C升至20°C。此外,对破裂的PV模块进行了潜在的诱导降解(PID)测试,并与无裂纹模块进行了比较。发现PID比无裂纹模块对模块的影响更大。
各种兴趣点,例如可调能级,重量轻,简单处理,机械敏感性,大面积的制造和易用性,可将其用作显着的光值工具。1 - 3然而,由于大规模的某些缺点,尤其是它们昂贵的产量,低吸收特性和较差的V OC,因此OSC社区将其重点放在了perovskite材料上。3 - 5个钙钛矿太阳能电池(PSC)已成为光伏技术中最有前途的技术,表现出显着的效率,低生产成本和多功能应用潜力。6此类材料被称为与矿物钙钛矿共有的晶体结构(CATIO 3),其典型组成是一种混合有机 - 无机铅或基于锡卤化物的化合物。钙钛矿材料具有ABX 3的一般公式,其中A是A阳离子,B是金属阳离子,而X是卤化物阴离子。7蓬勃发展,Kojima等人显示了其在光伏应用中的承诺。通过使用CH 3 NH 3 PBX 3作为光吸收层的一部分,通过使用CH 3 NH 3 PBX 3获得了3.8%的功率转化效率(PCE)。8随后,突破迅速遵循,当前的PSC现在超过25%,
为了解决这些问题,研究人员一直在研究智能交通信号系统的使用,该系统利用尖端技术来增强交通控制程序。文献中提出了各种智能交通信号灯系统。Martínez-rodríguez-osorio 等人(2006 年)提出了一种电力线通信系统,可以远程监控和控制交通信号灯。Abdullah 等人(2010 年)和 AbdelRahman 等人(2011 年)进行了一项研究,利用传感器识别车辆的存在并随后修改交通信号灯的时间。Odeh(2013 年)提出了一种系统,该系统采用遗传算法根据拥堵程度调节交通信号灯的持续时间,而 Salehet 等人(2017 年)开发了一种系统,该系统利用红外传感器、摄像头和图像处理算法根据交通量调节交通信号灯并识别闯红灯的车辆。这些系统共同体现了智能交通信号技术增强交通流量、安全性和效率的能力。