单基因疾病通常是特定基因单点突变的结果,导致非功能蛋白的产生。不同的血液疾病,例如β-丘脑贫血,镰状细胞病,遗传性球细胞增多症,fanconi贫血和血友病A和B,通常是由点突变引起的。基因编辑工具,包括Talens,ZFN或CRISPR/CAS平台,以纠正负责不同疾病的突变。然而,不依赖核酸酶活性的替代分子工具,例如形成三核苷酸及其衍生物(例如肽核酸),也证明了它们在DNA中纠正突变的能力。在这里,我们回顾了修复 - 螺肽反向Hoogsteen发夹(PPRHS)技术,该发夹可以代表该领域内的替代基因编辑工具。修复-PPRHS是由由五甲状腺素桥连接的两个息肉素镜重复序列形成的单链DNA分子,然后在分子的一端进行扩展序列,该序列是与DNA序列同源的,但要修复了DNA序列,但含有修复的DNA序列。PPRH的两个息肉臂由嘌呤之间的分子内反间隔键结合,从而形成了发夹结构。该发夹芯与watson-crick键以序列特异性方式与dsDNA中靶突变相对近乎近距离突变结合,从而产生了刺激重组的三重结构。这项技术已成功地用于修复其内源性基因座中DHFR和APRT基因突变体在哺乳动物细胞中的集合,并且可以适合校正负责血液疾病的突变。
肿瘤疾病是现代社会面临的一大挑战。因此,近几十年来,科学家们开始寻找能够支持或独立用于肿瘤治疗的天然化合物。在抗菌蛋白 (AMP) 中,从 Hyalophora cecropia 蛹的免疫血淋巴中分离出一种很有前途的肽家族。天蚕素家族不仅具有抗菌和抗真菌特性,而且最重要的是还具有抗癌特性。它们的抗肿瘤潜力已通过对几种不同细胞系(其中包括前列腺癌细胞系和乳腺癌细胞系)进行的体外研究得到证实。本文介绍了一些出版物,这些出版物展示了天蚕素家族成员对肿瘤细胞的细胞溶解特性,以及引入序列修饰的合成天蚕素 B 和与修饰的促黄体激素释放激素 (LHRH) 结合的天蚕素 B。此外,还描述了天蚕素作用机制的三种模型。这些肽在肿瘤治疗中应用的益处和局限性也已得到证实。
教职员工:Jeff Young、Robert Raussendorf、Lukas Chrostowski 学生、博士后、研究人员:Kashif Awan、Jingda Wu、Xiruo Yan、Donald Witt、Becky Lin、Adam Darcie、Adan Azem、Abdelrahman Afifi、Sebastian Gitt、Matthew Mitchell、Andreas Pfenning、David Roberts 与西蒙弗雷泽大学的 Stephanie Simmons 团队合作。
我们研究了一种使用基于测量的反馈来模拟自旋集合的量子多体动力学的方法。通过对大型两级量子系统集合进行弱集体测量并应用以测量结果为条件的全局旋转,可以模拟平均场量子踢陀螺的动力学,这是量子混沌的标准范式。我们通过分析表明,存在一个单独的量子轨迹可以充分恢复经典极限的机制,并展示了从嘈杂的量子动力学到由经典 Lyapunov 指数描述的完全确定性混沌的过渡。我们还分析了退相干的影响,并表明所提出的方案代表了一种可靠的方法,可以在基于原子光界面的实际实验平台上探索复杂量子动力学中混沌的出现。
量子控制和测量是同一枚硬币的两面。要影响动态图,必须将精心设计的时间相关控制场应用于感兴趣的系统。要读出量子态,必须将有关系统的信息传输到探测场。我们研究了这种双重作用的一个特定示例,即通过与非共振光学探针的光移相互作用对原子自旋进行量子控制和测量。通过引入不可约张量分解,我们确定了光场的斯托克斯矢量与原子自旋态矩的耦合。这表明偏振光谱如何用于随时间演变的原子可观测量的连续弱测量。同时,探测场引起的状态相关光移可以驱动自旋的非线性动力学,并可用于在原子上产生任意的幺正变换。我们重新审视主方程的推导,以便在非线性动力学和光子散射的情况下给出自旋动力学的统一描述。基于这种形式,我们回顾了量子控制的应用,包括状态到状态映射的设计,以及通过对动态控制集合进行连续弱测量进行量子态重建。2009 Elsevier BV 保留所有权利。