2.2.1.简史 ................................................................................................................ 9 2.2.2.等离子体状态的定义 .............................................................................................. 11 2.2.3.萨哈方程 ............................................................................................................ 13 2.2.4.自然界中的等离子体 ............................................................................................. 17 2.2.5.实验室中的等离子体 ............................................................................................. 18 2.2.6.等离子体中的能量转移 ............................................................................................. 26 2.2.7.液体中的等离子体 ............................................................................................. 29
然而,要实现商业化核聚变,必须克服若干挑战,利益相关方对这一时间表的预测从 10 年到几十年不等。一个关键的科学挑战是等离子体的物理学,即核聚变所需的物质状态。研究人员并不完全了解燃烧等离子体的行为,那些主要热源是核聚变反应本身而不是外部来源的等离子体。研究人员在这个领域取得了进展,但缺乏足够的实验数据来验证他们的模拟。一个关键的工程挑战是开发出能够承受核聚变条件数十年的材料,如极热和中子损伤,而目前还没有可以对材料进行全面测试的设施。更一般地说,从核聚变中提取能量以提供经济的电力来源的任务提出了几个复杂的系统工程问题,尚未解决。
摘要 电子束 (e-beam) 产生的等离子体在施加交叉电场和磁场 (E × B) 的情况下有望用于低损伤材料处理,并应用于微电子和量子信息系统。在圆柱形电子束 E × B 等离子体中,电子和离子的径向约束分别通过轴向磁场和径向电场实现。为了控制电子的轴向约束,这种电子束产生的等离子体源可能包含一个称为反阴极的导电边界,该边界位于等离子体与阴极轴向相对的一侧。在这项工作中,结果表明,改变反阴极电压偏置可以控制反阴极收集或排斥入射电子的程度,从而可以控制热电子(电子能量在 10-30 eV 范围内)和束电子群约束。有人提出,反阴极偏压对这些不同电子群形成的影响也与弱湍流和强朗缪尔湍流之间的转变有关。
摘要 电子束 (e-beam) 产生的等离子体在施加交叉电场和磁场 (E × B) 的情况下有望用于低损伤材料处理,并应用于微电子和量子信息系统。在圆柱形电子束 E × B 等离子体中,电子和离子的径向约束分别通过轴向磁场和径向电场实现。为了控制电子的轴向约束,这种电子束产生的等离子体源可能包含一个称为反阴极的导电边界,该边界位于等离子体与阴极轴向相对的一侧。在这项工作中,结果表明,改变反阴极电压偏置可以控制反阴极收集或排斥入射电子的程度,从而可以控制热电子(电子能量在 10-30 eV 范围内)和束电子群约束。有人提出,反阴极偏压对这些不同电子群形成的影响也与弱湍流和强朗缪尔湍流之间的转变有关。
他是 GREMI“生物医学应用等离子体”团队的负责人,也是法国网络“HAPPYBIO”的负责人,该网络汇集了 40 个与等离子体、脉冲电场和动态光疗在生物学中的应用研究相关的团队。他是国际等离子体医学学会和国际等离子体化学学会的董事会成员。
激光直接驱动 (LDD) 是惯性聚变能 (IFE) 设计最合适的方案之一,因为它可以比间接驱动 [1] 至少多两倍的激光能量耦合到内爆壳层。一旦通过宽带激光技术或激光波长失谐缓解横光束能量转移 (CBET),LDD 中激光与目标的耦合可以进一步增强约 2 倍。LDD 依赖于低 Z 烧蚀材料/等离子体(如聚苯乙烯、铍、碳等)对激光能量的吸收。日冕等离子体中吸收的激光能量主要通过电子热传导传输到烧蚀前沿。该过程的效率被称为内爆的“水效率”,即激光吸收和火箭效率的乘积。内爆舱的动能越大,点火裕度越大,IFE 目标的增益越高。三件事对于通过 LDD 方案实现 IFE 的成功至关重要:(1)。使大部分激光能量被日冕中的烧蚀等离子体吸收;(2)获得最佳的水效率,将尽可能多的激光能量与内爆胶囊的动能耦合,从而提供高烧蚀压力以加速壳体;(3)提高烧蚀速度以稳定瑞利-泰勒不稳定性增长,从而提高胶囊的完整性。有几种研究方向可以实现上述目标。宽带激光等先进激光技术可以解决吸收增加和印记减少等问题 [2]。一种补充途径是目标解决方案,即通过设计和制造先进的烧蚀材料来提供上述成功实现高增益 IFE 目标设计的关键因素。目标解决方案可以解决印记减少和 RT 等问题
本文提供了一项长期研究的第一个结果,该研究旨在提高使用航天器等离子相互作用系统软件的电推进诱导的电动推进诱导航天器充电的数值建模技术的有效性。欧洲航天局Bepicolombo任务的前数值模型及其输出作为模型当前功能和局限性的基准示例。证明,代码可以通过模拟电推进系统,推进器生成的等离子体以及暴露于空间的航天器系统之间的动态相互作用来获得航天器充电平衡。通过比较不同的多环反应指数的模拟,显示了在自由扩展推进器等离子体中对电子冷却的物理描述的重要性。它特别突出了将整个等离子体视为等温的不足。具有数值和物理参数的仿真输出的变异性为未来设计建模的未来改进和对等离子体推进器诱导的充电过程的理解铺平了道路,通过将来与可用的旋转遥控器进行比较。
主题 低压等离子体基本原理 热等离子体基本原理 大气非平衡等离子体基本原理 等离子体化学诊断 等离子体处理建模 液体中及与液体接触的等离子体 纳米材料和纳米结构的等离子体处理 功能涂层的等离子体沉积 等离子体气体转化 等离子体辅助燃烧和空气动力学 等离子体医学和农业 等离子体的环境应用
1989 年 11 月 7 日至 9 日,美国-日本在洛斯阿拉莫斯国家实验室 (LANL) 举办了两次关于紧凑环形 (CT) 等离子体物理和技术的研讨会。紧凑环形是主要受内部等离子体电流产生的磁场限制的结构。环形电流不受诸如磁线圈或真空容器等物体的阻碍。紧凑环形通常分为两类:场反转结构 (FRC),一种非常高的 beta 长等离子体,以及球形结构,通常是更扁的结构。第一个研讨会,即美国-日本场反转结构与稳态高温聚变等离子体研讨会,专门讨论了 FRC 的理论方面。紧接着召开的第二次研讨会,即第 11 届美日紧凑环形磁体研讨会上,介绍了关于 FRC 和球形磁体的实验和理论论文。总共有来自 23 个不同机构的 61 名注册参与者。十名参与者来自日本,两名来自欧洲,其余来自美国。共有 48 场演讲,平均分为口头和海报会议。联合研讨会论文集提交了四页配套论文,最近由 LANL 出版。
电磁波是所有等离子体(实验室聚变等离子体或天体物理等离子体)的固有组成部分。研究电磁波特性的传统方法依赖于适合在当今经典计算机上实现的麦克斯韦方程的离散化。传统方法对于量子计算实现并不有效——量子计算是一种未来的计算资源,它提供了极快的速度和显著降低计算成本的诱人可能性。本文讨论了与在量子计算机上实现麦克斯韦方程相关的两个主题。第一个主题是制定麦克斯韦方程的量子薛定谔表示,用于在冷、非均匀和磁化等离子体中传播波。这种表示允许幺正、能量守恒、演化,并且很方便地适用于量子计算机的适当离散化。借助这些结果,第二个主题是开发一系列幺正算子,这些算子构成了量子比特格子算法 (QLA) 的基础。 QLA 适用于量子计算机,可在现有的经典计算机上实施和测试,以保证准确性以及计算时间随可用处理器数量的缩放。为了说明麦克斯韦方程的 QLA,我们给出了电磁波包在空间中局部非色散介电介质中传播和散射的时间演化全波模拟结果。