摘要摘要:尽管有大量用于OMICS数据功能分析的方法,但对结果的全面详细了解仍然具有挑战性。这主要是由于缺乏可视化此类信息的公共可用工具。在这里,我们提出了一个基于GGPLOT2的R软件包,用于增强图形表示。我们的软件包采用了任何一般富集分析的输出,并以不同级别的详细信息生成图:从一般概述到确定最丰富的类别(条图,气泡图)到更详细的视图,显示在给定的类别中显示不同类型的分子信息(圈子图,和弦图,集群,集群图)。该软件包提供了对OMIC数据的更深入的见解,并允许科学家使用只有几行代码来生成洞察力,以轻松传达发现。可用性:R软件包GoPlot可通过CRAN-The综合R档案网络提供:http://cran.r-project.org/web/packages/goplot。可以在以下网址找到Venn图的闪亮Web应用程序:https://wwalter.shinyapps.io/venn/联系:fscabo@cnic.es; mricote@cnic.es补充信息:可以在https://wencke.github.io/
稀有变异难以检测是传统全基因组关联研究 (GWAS) 面临的问题之一。这一问题与单倍型等由多个等位基因组成的复杂基因组成密切相关。为解决这一问题,已提出了多种单核苷酸多态性 (SNP) 集方法。但这些方法很少与单倍型相关讨论。在本研究中,我们开发了一种新的 SNP 集方法“RAINBOW”,并将该方法应用于基于单倍型的 GWAS,将单倍型块视为 SNP 集。结合单倍型块估计和 SNP 集 GWAS,可在无需先前单倍型信息的情况下进行基于单倍型的 GWAS。我们准备了 100 组稻 (Oryza sativa subsp.) 的模拟表型数据和真实标记基因型数据集。 indica,并对数据集进行 GWAS。我们比较了我们的方法、传统的单 SNP GWAS、传统的基于单倍型的 GWAS 以及传统的 SNP 集 GWAS 的功效。结果显示我们的方法在三个方面优于这些方法:(1)控制假阳性;(2)如果数据集中对因果变异进行了基因分型,则可以不依赖连锁不平衡来检测因果变异;(3)它显示出比其他方法更高的功效,即它能够检测到其他方法未能检测到的因果变异,主要是当因果变异位置非常接近且其作用方向相反时。通过在本研究中使用 SNP 集方法,我们期望不仅可以检测出罕见变异,还可以检测出具有复杂机制的基因,例如具有多个因果变异的基因。 RAINBOW 是作为名为“RAINBOWR”的 R 包实现的,可从 CRAN(https://cran.r-project.org/web/packages/RAINBOWR/index.html)和 GitHub(https://github.com/KosukeHamazaki/RAINBOWR)获取。
高部分负荷效率 满负荷下的能源效率 (EER 或 COP) 对于许多应用来说并不是衡量空调和热泵设备实际能耗的适当指标。能耗在很大程度上取决于天气条件,此外,设备通常规模过大,以覆盖一年中最关键的时期,因此在大部分总运行时间内以部分负荷运行。随着对部分负荷运行和新的季节效率 (ESEER) 指标的日益关注,ZPE 压缩机代表了市场上实现高 ESEER 等级的最佳选择,因为部分负荷效率提高了 25-30%。