摘要“茎”的概念结合了调节未分化原始细胞的典型的无限自我再生潜力的分子机制。这些细胞具有导航细胞周期,进出静态G0相的独特能力,并保持产生多种细胞表型的能力。干细胞作为具有非凡再生能力的未分化前体,在整个人体中表现出异质性和组织特异性分布。对各种组织中不同干细胞种群的识别和表征彻底改变了我们对组织稳态和再生的理解。从造血到神经和肌肉骨骼系统,组织特异性干细胞的存在强调了多细胞生物的复杂适应性。最近的研究表明,主要在骨髓和其他基质组织内,有多种非脊髓性干细胞(非HSC)以及造血干细胞(HSC)的群体。在这些非HSC中,一个罕见的子集具有多能特征。在体外和体内研究表明,这些假定的干细胞的显着分化潜力,包括各种名称,包括多功能成年祖细胞(MAPC),骨髓分离的成年成人多琳多诱导细胞(迈阿密),小血液干细胞(SBSC),很小的胚胎样细胞(vsels),非常小的干细胞(VSELS)和多重依赖(Muse)和多个依赖(Muse)。关键字干细胞,缪斯细胞,VSEL,SBSC,迈阿密细胞,MAPC,多能分配给这些原始干细胞种群的多种命名词可能来自不同的起源或不同的实验方法。本综述旨在提出对源自基质组织的多能/多能干细胞各种亚群的综合比较。通过分析与这些人群相关的隔离技术和表面标记表达,我们的目的是描述基质组织衍生的干细胞之间的相似性和区别。了解这些组织特异性干细胞的细微差别对于释放其治疗潜力和推进再生医学至关重要。干细胞研究的未来应优先考虑共享实验室环境中方法论和协作研究的标准化。这种方法可以减轻研究结果的变异性,并促进科学伙伴关系,以充分利用多能干细胞的治疗潜力。
科学家可能很快开发出创新的方法来操纵干细胞而不会损害胚胎。一个潜在的突破可能涉及重新激活基因以将成年细胞转化为多能细胞,从而使它们分化为各种细胞类型。这样做,科学家希望创建一个可用于医学研究和治疗的新一代干细胞。干细胞是未分化的细胞,具有巨大的潜力,能够成为专业细胞。有两种主要类型:胚胎干细胞,比成人干细胞更有希望。干细胞的研究对于理解细胞分化至关重要 - 通用胚胎细胞转化为具有独特功能的专用细胞的过程。人体依靠各种分化的细胞来执行特定的任务,这些任务来自为促进运动的骨细胞提供结构和保护的皮肤细胞。研究人员在开发诱导多能性的方法方面取得了重大进展,使成年细胞能够恢复到更早的发育阶段并恢复其多能性能。但是,围绕干细胞研究的伦理仍然是辩论的话题。有些人认为胚胎干细胞具有更大的医疗突破潜力,而其他人则主张使用源自现有组织的成年干细胞。随着科学家继续提高我们对干细胞和细胞分化的理解,我们可以期望在为各种疾病和疾病开发新的治疗方法方面取得重大进展。通过探索细胞开发和专业化的复杂性,研究人员旨在创造创新的疗法,以改善人类健康和生活质量。干细胞是高度可再生的细胞,可以分化为多种细胞类型。干细胞的关键特征是它们分化的能力,这使它们可以发展为专业的细胞和组织。此过程使生物体从简单的阶段发展到复杂的过程。有不同类型的干细胞,包括可以在人体中形成所有组织的全能细胞,可以产生许多细胞类型但不是特定组织的多能细胞,以及可以产生多种分化细胞类型的多能细胞。
SPG11 中的双等位基因致病变异编码了 spatacsin,可导致罕见的运动神经元疾病,如遗传性痉挛性截瘫 11 型 (SPG11-HSP)、夏科-马里-图斯病和青少年型肌萎缩侧索硬化症-5 (ALS5)。SPG11-HSP 是最常见的复杂常染色体隐性 HSP。除了下肢痉挛和截瘫外,SPG11-HSP 患者还存在其他症状,如认知能力下降、上肢无力和周围神经病变(Pozner et al., 2020)。SPG11 编码一种 ~280 kDa 的蛋白质,称为 spatacsin,其参与自噬溶酶体机制的功能和囊泡运输。然而,由于缺乏特异性抗体,spatacsin 的确切功能尚不清楚。为了克服这一障碍,我们生成了一种内源标记的 SPG11 人诱导多能干细胞 (hiPSC) 系 (SPG11-HA)。标记是通过使用 CRISPR/Cas9 技术将具有同源定向修复的 HA 标签插入市售人类游离型 iPSC 系 (A18945;Thermo Fisher Scientific) 中进行的。用编码 SpCas9、GFP 和单个向导 RNA (gRNA;addgene) 的载体以及单链寡核苷酸 (ssODN) 供体 DNA 进行核转染。ssODN 包含一个 HA 编码区,两侧是 ~66 – 67 个核苷酸同源臂(图 1 AB)。经过单细胞分选程序和克隆扩增后,通过 PCR 扩增和桑格测序鉴定出阳性候选者(图 1 A)。通过 Sanger 和 Amplicon/NGS 测序确认了基因型 (图 1 A、C)。在预测的脱靶位点未检测到致病变异 (图 S1 A)。与未经过 CRISPR 过程的 iPSC 对照细胞 (ctrl) 相比,染色体微阵列分析未发现核转染报告系中存在任何从头拷贝数变异 (CNV) (图 1 D)。然而,在这两种细胞系中均发现了 20q11.21 处的增益。这种 CNV 在 hiPSC 和癌症中反复出现,表明它具有增殖或生存优势 (Nguyen et al., 2014)。ctrl 和 SPG11-HA iPSC 均表现出典型的多能性细胞样形态,并经支原体检测呈阴性 (图 S1 BC)。两种细胞系均表达多能性标记,并在三系分化范式测试中分化为所有三个胚层的衍生物(图 1 EF;图 S1 D;表 1)。为了验证报告细胞系的功能,通过蛋白质印迹研究了标记的 spatacsin 的表达。正如预期的那样,HA 标记的 spatacsin 在 280 kDa 的大小下可检测到(图 1 G)。由于 spatacsin 功能丧失后表现出一系列神经系统症状,因此评估了神经分化能力。近 90% 的分化对照和 SPG11-HA 神经祖细胞 (NPC) 表达
长期以来,我们一直通过动物模型进行推断,以更好地了解我们自己的生物学和健康状况。 在这些模型中,两栖动物,尤其是非洲爪蟾,已成为生物学发现的强大源泉,为胚胎学、细胞生物学、遗传学、生理学、毒理学、进化、生态学和疾病的基本过程提供了惊人的见解。 事实上,对两栖动物的研究一直在开辟新的发现领域,这一事实反映在众多诺贝尔生理学或医学奖的贡献中,从因发现毛细血管运动调节机制而获得的奥古斯特奖(Lindstedt,2014)开始,最近的是 John Gurdon 于 2012 年因将成熟细胞重编程为多能性而获得的奖项(Krogh,1919;Gurdon 等人,1958;Gurdon 和 Hopwood,2000;Burggren 和 Warburton,2007;Blum 和 Ott,2018)。在过去的 70 年里,非洲爪蟾已经成为主要的两栖动物模型和全球使用最广泛的模型系统之一,对生物学研究产生了巨大的影响。非洲爪蟾原产于南非和中非,最初在 20 世纪 30 年代和 40 年代传入欧洲和北美的实验室,成为当时领先的妊娠试验;注射一次含有促性腺激素的人尿足以在数小时内诱发产卵( Gurdon 和 Hopwood,2000 年)。然而,这种通过简单的激素注射就能全年按需产生数千个卵子和体外发育胚胎的能力,使得非洲爪蟾比其他可用的实验模型具有明显的优势。再加上它的卵母细胞和胚胎很大,非常适合生化、细胞生物学和胚胎学操作,易于进行基因组操作,与人类进化相对接近,维护成本低,生命周期短,这些都使非洲爪蟾成为一种非常有价值的模型。在过去的二十年中,二倍体物种 X.tropicalis 的建立作为实验室模型增加了额外的强大遗传工具(Grainger,2012;Tandon 等人,2017)。X.laevis 和 X.tropicalis 共同使我们能够快速研究体内和体外的基本生物学过程。这使得 Xenopus 成为基因组时代的理想系统,我们需要适合测试人类疾病基因功能的有效模型。本研究主题的目的是强调 Xenopus 作为研究人类发育、疾病和病理的模型系统的出色多功能性和实用性。它包括 18 篇主要研究和评论文章,探讨了各种主题,包括发育、再生、癌症、生物缩放和人类疾病建模,并概述了可用于支持 Xenopus 研究的广泛资源。我们希望它将成为既有经验的 Xenopus 研究人员的资源,以及寻找适合其研究的模型系统和方法的 Xenopus 新手。
3D打印的医疗用途正在快速扩展,并且会改变医疗保健的大时间。这些用途可以分为四个主要领域:制造组织和器官,创建定制的植入物和假肢,对药物进行研究,并弄清楚如何将药物置于体内正确的位置。在医学中使用3D打印可以使诸如假肢,设备甚至药物之类的东西为每个人进行超级定制,这真的很酷。它还使事情变得更便宜,帮助人们更有效地工作,让任何人都可以在不需要花哨的机器的情况下设计东西,并将科学家聚集在一起从事项目。,但这并不是所有的阳光 - 在3D打印之前,仍有许多科学和监管挑战确实可以改变医疗保健。人们一直在医学上的3D打印中取得了重大进步,但他们仍在等待最具游戏规则的东西。通过3D打印制造的自定义助听器彻底改变了听力学领域,超过99%的现代助听器是针对个人用户量身定制的。人体的独特复杂性使3D打印模型对于手术制备必不可少,比传统的2D成像方法提供了更准确的表示。此外,神经外科医生可以从3D打印模型中受益,以更好地理解复杂的人体解剖结构。在许多情况下,这些模型有助于医学专业人员在手术前对患者的特定解剖学特征获得宝贵的见解。3D打印技术的最新进步正在彻底改变包括医学在内的各个领域。此外,3D打印的进步导致了定制的药物配方和新型剂型的形式,例如微胶囊和纳米舒张,这对个性化医学有希望。3D打印在医疗应用中的潜在好处包括增加定制和个性化,成本效率,提高生产率,民主化和协作。尽管有希望的应用,但3D打印仍面临一些挑战,包括不切实际的期望和炒作,安全和保安问题,专利和版权问题。虽然已经使用了某些应用程序,但例如器官打印等其他应用程序需要更多的时间来开发。可以在线找到有关3D打印医学应用程序的综合报告,其中包含详细的图像和说明。国家医学图书馆(NLM)提供了对科学文献的访问权限,并维护了一个数据库,其中包含有关医学中3D印刷的信息。但是,将其包含在其数据库中并不意味着与NLM或国家卫生研究院的内容认可或同意。最近的一篇文章回顾了将3D打印应用于医疗领域的一些最新发展,涵盖了当前的艺术状况以及用于医疗应用的3D打印的局限性。美国测试与材料学会(ASTM)国际委员会F42采用了添加剂制造(AM)来从三维数字数据中产生物理对象的技术。手术规划已演变为合并高级技术。在一项研究中,Vodiskat等。添加剂制造(通常称为3D打印)是一种制造方法,可以通过将材料融合或将材料融合到底物上或将物质融合或沉积物质来创建物体。此过程具有高度的用途,可以利用各种材料,例如粉末,塑料,陶瓷,金属,液体或活细胞。通过研究复杂的器官或解剖标本的解剖学和生理学,外科医生可以为操作创建个性化计划。3D模型使他们能够在进入手术室之前探索不同的方法并获得动手经验。此过程大大减少了操作时间并改善了结果。3D印刷患者特定的假体的最新进展使残疾人能够过正常生活。高质量的成像技术允许精确的解剖假体创建,影响包括牙科在内的各个医学领域。将尸体材料用于培训引起了道德问题和成本问题。3D打印通过从CT成像中重现复杂的解剖器官提供了一种新颖的解决方案,适用于没有尸体的情况。能够打印不同尺寸的多个副本的能力也有益于培训设施。可以直接印刷细胞的打印机的开发导致了毒性测试的细胞结构的自动产生,并针对疾病和肿瘤进行了新的治疗方法。这项技术通过允许对匹配天然细胞排列的组织的可重复打印来加速研究过程。使用3D打印模型来对复杂的先天性心脏状况进行术前计划。医学研究的应用包括生产人体器官和组织结构,将它们与模仿本地人体器官的功能相结合。下一步是在操作过程中打印可移植的器官或器官,彻底改变医学。药物输送也将随着3D打印成为药品不可或缺的一部分,可以实现指定剂量和持续的释放层。使用3D打印技术可以实现个性化治疗,并通过创建针对其解剖结构的定制药物输送设备来帮助患者减少药物。这些进步表明,3D打印正在改变医学,许多应用程序使进行详尽的审查变得具有挑战性。最近的几项研究集中在特定领域,例如组织和器官的医学成像,手术和生物打印。本综述旨在通过研究各种应用程序(包括个性化处理,术前计划模型和定制的药物输送设备)来检查2014年以来的发展,从而证明当前的艺术状况。他们采用了两种不同的市售技术来重建三名患者的缺陷,得出结论,有了良好的CT扫描数据,可以创建一种具有成本效益的3D印刷模型。另一个具有挑战性的区域是旧骨盆骨折手术,其中Wu等人。评估了在四年和9个临床病例中使用3D打印的骨盆模型进行术前计划。他们发现术前计划与术后结果之间有良好的相关性,但建议进一步研究以巩固这些模型的使用。Truscott等人。提出了3D打印模型的案例研究,这些模型可以帮助外科医生进行术前计划,从而从骨盆和股骨,眼窝和肩cap骨的CT扫描数据创建模型。他们使用激光插入技术从钛中脱颖而出,与CNC工艺相比,结论一下将材料废物最小化。研究人员使用3D打印技术成功地创建了耳朵假肢(PVDF)。假体对压力变化表现出很高的敏感性,表明在生物医学工程中使用了潜力。传统的患者特异性颅骨成形术假体很昂贵。相比之下,一种具有成本效益的方法使用丙烯酸骨水泥。但是,水泥的手动制造可能很麻烦,可能不会产生令人满意的结果。使用FDM创建了CT扫描数据的3D打印头骨,作为模板来塑造丙烯酸植入物。这种方法在临床环境中的有效性需要进一步研究。一种新型的陶瓷制造技术,结合了冻结的泡沫,实现了开放式孔连接的泡沫结构,可以用作下一代骨骼替代材料,用于个性化植入。提出了一种创建周期性蜂窝结构的设计方法,由材料制成的3D打印植入物将满足较轻的植入物的要求并满足审美和功能需求。最近的研究还使用了3D打印来再现具有精确反映个人特征的组织的巨大潜力的患者特异性组织材料。Khaled等。 Goyanes等。Khaled等。Goyanes等。3D打印模型在解剖学上是准确的,只要提供高质量的CT扫描数据。但是,它们可能不灵活,这使得在涉及大脑(大脑)的软组织的情况下进行应用。使用组合的3D打印,成型和铸造的一种建议的方法创造了逼真的,生理准确和可变形的人脑模型。研究人员已使用独特的技术成功地创建了个性化的大脑模型。这种突破允许创建解剖上准确且可变形的大脑模型,可用于手术计划或医学训练(图3)。此外,科学家还开发了具有成本效益的方法来生产人类解剖学对象的高质量复制品,以进行培训。3D打印技术的发展也导致了癌症研究的重大进步。通过使用HeLa细胞和水凝胶结构创建合成宫颈肿瘤,研究人员已经能够研究该疾病的生长和行为(图4)。这种创新的方法显示出令人鼓舞的结果,肿瘤增殖得更快并形成细胞球体。此外,生物打印已通过微流体网络引导细胞来创建复杂的组织结构。Drexel University的研究人员开发了定制的沉积设备,可以精确材料沉积和异质细胞共培养(图5)。在另一个突破中,科学家使用了3D打印的水凝胶支架来种植微藻和人类细胞的培养物。生物制造。2016; 138(4):041007。2016; 138(4):041007。微藻能够迅速生长,叶绿素含量在几天内增加了16倍。该技术有可能将氧或二级代谢物作为治疗剂提供。技术与生物学的交集导致了3D生物打印的开创性进步。康奈尔大学的研究人员成功地使用水凝胶作为细胞的脚手架打印了全尺寸三叶心脏瓣膜,展示了它们在医疗应用中的潜力。但是,他们指出原型的拉伸强度需要改进。爱丁堡的研究人员通过使用3D打印技术打印功能“迷你肝”,取得了重大进步。他们的创新在于保留3D藻酸盐水凝胶基质中脆弱的臀部细胞的生存力和多能性。这项工作对无动物的药物试验和个性化医学具有深远的影响。超出人体器官的范围,研究人员创建了一个3D形态空间,以描述各种尺度(包括细胞和动物生物)的生物结构。此工具使他们能够探索新的生物配置并研究有关进化的基本问题。此外,伦敦大学学院的研究人员还表明,在制造局部药物输送系统以治疗痤疮等疾病中,有3D生物打印的潜力。他们使用热熔体挤出将水杨酸加载到商业聚合物丝中,突出了该技术的多功能性。3D打印的多功能性可通过调整丝制剂来进行不同的剂量。3D打印技术因其在创建个性化医疗设备(包括药物片和假肢)方面的潜在应用而进行了探索。研究人员发现,立体光刻(SLA)方法可以生产具有精确接触甚至剂量输送的设备。使用桌面3D打印机成功打印了甲烯烃双层片,证明了其产生高质量药物片的潜力。他们比较了药物释放曲线,发现在14小时剂量周期中,一种设计保留在商业药物概况的10%之内。通过使用FDM工艺打印paracetamol的细丝,研究了不同形状对药物释放曲线的影响。他们的结果表明,使用传统方法很难制造复杂的几何形状,但可以更好地控制药物释放。3D印刷和医学生物印刷方面的最新发展在各个领域都具有巨大的潜力。在手术中,3D印刷模型可以帮助外科医生进行计划操作,缩短程序时间和改善结果。也可以快速,经济地创建特定于患者的假肢,使其成为传统解决方案的有吸引力的替代品。Zhao等,Snyder等人和Lode等人等研究人员的工作。已经证明了更准确的疾病模型的潜力,尤其是在癌症研究中。将微流体与3D生物构成整合起来,可以创建复杂的组织结构和共培养物,为功能器官的发展铺平道路。2014; 6(3):035001。 doi:10.1088/1758-5082/6/3/035001。目前,打印整个生物器官仍然是一个遥远的目标。虽然细胞打印可以产生强大的细胞培养,但创建具有必要结构完整性的结构仍然是一个重大挑战。水凝胶矩阵,印刷技术和微流体的整合是通过生物打印来开发功能性人造器官的关键步骤。在不久的将来,3D打印机可能在药房中很普遍,从而实现了个性化的药物输送和制造定制设备。例如,可以通过控制几何形状和精度来实现具有控制药物释放的打印平板电脑。3D印刷在医学中的应用是巨大而变革性的,从创建一次性物体到假肢。随着研发的继续,我们可以期望在个性化药物,器官印刷和手术计划等领域取得令人兴奋的进步。但是,这些技术仍处于早期阶段,需要在广泛采用之前进行进一步的创新和实际考虑。本文讨论了3D打印技术的应用和进步,尤其是在医学领域。作者参考了各种研究和研究论文,探讨了3D印刷在医学中的潜在用途,包括创建假肢,植入物和生物印刷。引用的论文涵盖了一系列主题,从钛植入物的生物相容性到开发用于测试药物毒性的芯片技术。几项研究探讨了3D打印在手术和医学中的使用。生命科学工程学。讨论的其他领域包括三维生物印刷,医学成像和假肢的计算机辅助制造。一些好处包括提高手术计划中的准确性和精度,减少了传统方法上花费的成本和时间,以及改善患者的结果。研究人员还使用3D打印来为具有独特需求的患者创建定制的植入物和假肢。3D印刷在医学中的其他应用包括为训练目的创建实际的器官和组织模型,开发了个性化的神经外科手术计划的大脑模型,以及用诸如压力和温度等内在特性的感觉耳朵假体制造感觉耳朵假体。研究还研究了使用3D打印来生产患者特异性的丙烯酸颅骨成形术,定制的骨盆损伤模板和具有量身定制的机械性能的功能多孔结构。此外,研究人员还探索了用于生物医学应用的陶瓷和金属陶瓷复合材料的创新制造方法。3D打印在手术中的优点包括其创建复杂形状和结构,减少废物和材料消耗的能力,并提高手术计划的准确性和精度。但是,这项技术也存在一些挑战和局限性,例如对专业设备和专业知识的需求以及对灭菌和感染控制的潜在关注。总体而言,3D打印有可能彻底改变手术和医学的各个方面,从术前计划到植入植入物和患者护理。2015; 15(2):177–183。2015; 15(2):177–183。Zhang等人,用于体外Zhang T,Zhang T,Cheng S,Sun W.宫颈肿瘤模型的HeLa细胞三维印刷。Zhang等人,用于细胞设备的微流体歧管制造Snyder J,Son AR,Hamid Q,Sun W.通过精确挤出沉积和含细胞装置的复制模制来制造微流体歧管。制造科学与工程杂志。lode等人,绿色生物打印Lode A,Krujatz F,BrüggemeierS,Quade M,SchützK,Knaack S,Weber J,Bley J,Bley T,Bley T,Gelinsky M. Green Bioprinting:光合作用藻类Laden Hadegae Laden Hydogel scapforts的生物性和医学物质。duan等人,异质主动脉阀Conduits Duan B,Hockaday LA,Kang KH,Butcher JT的3D生物打印。与藻酸盐/明胶水凝胶异质主动脉瓣导管的3D生物打印。生物医学材料研究杂志研究部分A。2013; 101(5):1255–1264。 Faulkner-Jones et al., Bioprinting of human pluripotent stem cells Faulkner-Jones A, Fyfe C, Cornelissen DJ, Gardner J, King J, Courtney A, Shu W. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. 生物制造。 2015; 7(4):044102。 ollé-Vila等,合成器官和类符号的形态 - ollé-vila A,Duran-Nebreda S,Conde-Pueyo N,MontañezR,SoléR。 综合生物学。 2016; 8(4):485–503。 受控释放杂志。 2016; 234:41–48。2013; 101(5):1255–1264。Faulkner-Jones et al., Bioprinting of human pluripotent stem cells Faulkner-Jones A, Fyfe C, Cornelissen DJ, Gardner J, King J, Courtney A, Shu W. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D.生物制造。2015; 7(4):044102。ollé-Vila等,合成器官和类符号的形态 - ollé-vila A,Duran-Nebreda S,Conde-Pueyo N,MontañezR,SoléR。综合生物学。2016; 8(4):485–503。 受控释放杂志。 2016; 234:41–48。2016; 8(4):485–503。受控释放杂志。2016; 234:41–48。2016; 234:41–48。Goyanes等人,3D扫描和印刷,用于个性化药物交付Goyanes A,Det-Amornrat U,Wang J,Basit AW,Gaisford S. 3D Scanning和3D打印作为用于制造个性化局部药物输送系统的创新技术。Khaled等人,桌面3D打印的受控释放制药双层片Khaled SA,Burley JC,Alexander MR,Roberts CJ。桌面3D打印受控释放的药品双层平板电脑。国际药品杂志。2014; 461(1):105–111。 Goyanes等人,几何形状对3D印刷片剂Goyanes A,Martinez PR,Buanz A,Basit AW,GaisfordS。几何形状对3D印刷平板的药物释放的影响。 国际药品杂志。 2015; 494(2):657–663。2014; 461(1):105–111。Goyanes等人,几何形状对3D印刷片剂Goyanes A,Martinez PR,Buanz A,Basit AW,GaisfordS。几何形状对3D印刷平板的药物释放的影响。国际药品杂志。2015; 494(2):657–663。2015; 494(2):657–663。