博士学位 - 迈索尔大学Bina Joe博士是院长的执行内阁成员,杰出大学教授,生理学与药理学系主席,弗雷德里克·希斯(Frederick -Hiss)捐赠教授兼医学院医学院医学院的高压和精确医学中心的创始主任。乔博士获得了博士学位来自印度迈索尔大学。在班加罗尔印度科学学院进行了短暂的博士后研究金之后,她搬到了为印度阿斯利康(Astrazeneca India)工作的制药行业,随后于1997年作为国际福加蒂学者(Fogarty School)移民到美国,以进行分子遗传学研究分子遗传学研究。她在高血压的工作始于2001年,当时她在现任机构托莱多大学医学院(以前被称为俄亥俄州医学院)担任教职员工。2011年,她成立了高血压和精密医学中心,这是大学研究委员会批准的中心。自2015年以来,她担任了部门主席的职位。在过去的二十年中,她一直在领导高血压研究中发挥作用,该研究现在被认为是托莱多大学独特区别的聚光灯研究领域。Joe博士是高血压研究的国际认可的领导者,在过去的17年中,美国政府不断地以2200万美元的价格资助。 她发表了超过150篇同行评审的文章,许多记录了开创性的发现和6个书籍章节。Joe博士是高血压研究的国际认可的领导者,在过去的17年中,美国政府不断地以2200万美元的价格资助。她发表了超过150篇同行评审的文章,许多记录了开创性的发现和6个书籍章节。她的研究工作发表在几种顶级期刊上,包括PNA,细胞,细胞报告和自然通信。她的实验室是第一个使用CRISPR -CAS9基因编辑来定位克隆非编码变体的实验室,从而引起高血压。最新的先驱她的实验室最新创新发现包括(1)将肠道菌群鉴定为血压调节的因果因素,(2)酮体体链甲酰丁酸酯作为抗繁殖代谢物,(3)能量代谢和高压素和高压素之间的连接(3)与Diirth rybs之间的联系之间的联系。她是高血压研究的几项研究奖项的首位亚裔美国人,包括国际哈里特·达斯坦(Harriet Dustan)的科学妇女奖以及美国心脏协会的刘易斯·K·达尔纪念演讲奖,欧内斯特·斯塔林(Ernest Starling)
1. Anita Buckley、Pavel Chuprikov、Rodrigo Otoni、Robert Soulé、Robert Rand 和 Patrick Eugster (2024)。用于指定量子网络的代数语言。编程语言设计和实现 (PLDI)。2. Anita Buckley、Pavel Chuprikov、Rodrigo Otoni、Robert Rand、Robert Soulé 和 Patrick Eugster (2023)。面向量子网络的代数规范。量子网络和分布式量子计算 (QuNet)。3. Yuxiang Peng、Kesha Hietala、Runzhou Tao、Liyi Li、Robert Rand、Michael Hicks 和 Xiaodi Wu (2023)。Shor 分解算法的正式认证端到端实现。美国国家科学院院刊 (PNAS)。 4. Finn Voichick、Liyi Li、Robert Rand 和 Michael Hicks (2023)。Qunity:一种用于量子和经典计算的统一语言。编程语言原理 (POPL)。5. Giovanni De Micheli、Jie-Hong R. Jiang、Robert Rand、Kaitlin Smith 和 Mathias Soeken (2022)。量子计算和量子技术的进展:设计自动化视角。IEEE 电路与系统新兴和精选主题杂志。6. Kartik Singhal、Kesha Hietala、Sarah Marshall 和 Robert Rand (2022)。Q# 作为量子算法语言。量子物理与逻辑 (QPL)。7. Kesha Hietala、Robert Rand、Shih-Han Hung、Liyi Li 和 Michael Hicks (2021)。证明量子程序正确。交互式定理证明 (ITP)。8. Kesha Hietala、Robert Rand、Shih-Han Hung、Xiaodi Wu 和 Michael Hicks (2021)。量子电路的经过验证的优化器。编程语言原理 (POPL)。9. Robert Rand、Aarthi Sundaram、Kartik Singhal 和 Brad Lackey (2020)。量子程序的 Gottesman 类型。量子物理和逻辑 (QPL)。10. Robert Rand、Kesha Hietala 和 Michael Hicks (2019)。形式验证与量子不确定性。编程语言进步峰会 (SNAPL)。11. Robert Rand、Jennifer Paykin、Dong-Ho Lee 和 Steve Zdancewic (2018)。ReQWIRE:关于可逆量子电路的推理。量子物理和逻辑 (QPL)。 12. Jennifer Paykin、Robert Rand 和 Steve Zdancewic (2017)。QWIRE:量子电路的核心语言。编程语言原理 (POPL)。13. Robert Rand、Jennifer Paykin 和 Steve Zdancewic (2017)。QWIRE 实践:Coq 中量子电路的形式化验证。量子物理与逻辑 (QPL)。
参考文献 1. Maertens, GN 等人 (2022) 逆转录病毒整合酶的结构和功能。《自然微生物学评论》20,20-34。 2. https://en.wikipedia.org/wiki/Alteplase 3. Ono, M. 等人 (1985) 叙利亚仓鼠体内 A 型颗粒基因的核苷酸序列:A 型颗粒基因与 B 型和 D 型肿瘤病毒基因的密切进化关系。《病毒学杂志》387-394。 4. Wurm, FM 等人 (1989) CHO 细胞中内源性逆转录病毒样 DNA 序列的存在和转录。在:动物细胞生物学和生物过程技术的进展。编辑 RE Spier、JB Griffiths、J. Ste- phenne 和 PJ Crooy,76-81,Butterworths。 5. Anderson, KP 等人(1990) CHO 细胞内池内 A 粒子相关序列的存在和转录。病毒学杂志 64 (5), 2021-2032。 6. Venter, JC 等人 (2001)。人类基因组序列。科学。291 (5507): 1304–1351。 7. Duroy, PO. 等人 (2019) 中国仓鼠卵巢细胞内源性逆转录病毒的表征和诱变以灭活颗粒释放。生物技术生物工程。DOI:10.1002/bit 27200 8. Li, S. 等人 (2019) 中国仓鼠的蛋白质组学注释揭示了大量新的翻译事件和内源性逆转录病毒元件。蛋白质组研究杂志,18(6), 2433–2455。 https://doi. org/10.1101/468181 9. Naville, M., Volff, J.-N. (2016) 鱼类基因组中的内源性逆转录病毒:从过去感染的遗迹到进化创新?微生物学前沿 doi:3389/fmicb.2016.01197 10. Löwer, R. 等人 (1996) 我们所有人体内的病毒:人类内源性逆转录病毒序列的特征和生物学意义。PNAS 93, 5177-5184 11. Patel, MR 等人 (2011) 古病毒学——过去病毒的幽灵和礼物。Curr. Opin.Virol. 1, 304-309 12. Reid, GG 等人(2002):用于生产生物制剂的小鼠和中国仓鼠细胞系中内源性逆转录病毒计数的电子显微镜技术比较。J. Virol. Meth. 108, 91-96 13. Stocking, C., Kozak, C. (2008) 小鼠内源性逆转录病毒。Cell.Mol. Life Sci. 65, 3383-3398 14. Wurm, FM (2013) CHO 准种 – 对制造工艺的影响。工艺 1,3, 296-311 15. Wurm, FM, Wurm, MJ (2017):CHO 细胞的克隆、生产力和遗传稳定性 – 讨论。工艺 2017, 5, 20, doi: 103390/pr5020020
活细胞需要能量,有些细胞比其他细胞需要更多能量。有些细胞的代谢率在几秒钟内从最小变为最大,而有些细胞则是无底洞,需要无节制地持续供应能量。能量底物和氧气的供应以及代谢废物的清除是通过复杂的血管网络来维持的,富含葡萄糖的血浆和充满氧气的红细胞 (RBC) 就是通过血管网络运输的。能量代谢的变化是诊断和监测组织疾病的常用指标,这一事实进一步强调了深入了解能量供应的重要性。大脑也不例外,但它有许多特殊功能和未解之谜。能量需求大约比身体每体积的平均能量需求高出一个数量级。最重要的是,由于大脑的能量储存能力有限,因此必须持续供应氧气和葡萄糖。供应中断几分钟就会对脑细胞造成不可逆转的损害。因此,大脑使用复杂的调节系统来控制其能量供应,该系统涉及壁细胞以及神经元和神经胶质细胞。更清楚地了解单个血管和整个脉管系统水平的血流变化对于揭示这个相互关联的系统如何协调其适应性至关重要。在 PNAS 中,Meng 等人 (1) 介绍了一种强大的超快速方法来改善微血管网络中脑血流的体内测量,这将大大提高双光子显微镜在量化微血管灌注方面的适用性。尽管自 19 世纪末以来我们就知道大脑会局部调节血流以满足局部能量需求的增加 (2, 3),但潜在的血液动力学过程以及细胞间和细胞内的信号通路仍然很大程度上未被发现(有关最近的综述,请参阅参考文献 4 和 5)。并且,在当前背景下需要强调的是,允许以高空间和时间分辨率测量血流的方法有限,但它们对于产生对血液调节微血管方面的新见解至关重要。由于其重要性,研究人员不断开发和应用各种方法来测量脑血流。这些方法基于不同的模式,例如放射性标记扩散化合物、氢扩散和微电极技术、磁共振成像、光谱、光学相干断层扫描、激光散斑成像,以及最近的聚焦超声和光声成像。其中一些方法已达到黄金标准地位,而其他方法则从地图上消失了。1998 年,Kleinfeld 等人 (6) 引入双光子显微镜来追踪单个红细胞。在接受静脉注射荧光葡聚糖以染色血浆的麻醉小鼠中,通过毛细血管短段的千赫兹线扫描来量化位移
该学生的总体目标是创建量身定制的超稳定膜纳米盘,以加速结构表征并生成粘合剂到整体膜蛋白。自行车疗法具有独特的技术:自行车肽将短线性肽限制在使用中央化学支架的稳定的双循环结构中。该结构赋予了强大的类似药物的特性,包括高亲和力结合和快速组织渗透,以对针对小分子或抗体疗法的靶标产生治疗剂。自行车最初是通过针对固定目标筛选数十亿个变体来选择的。此选择是可溶性蛋白或具有较大结构性外域的膜蛋白的常规方法,但对于多跨膜(Multitm)膜蛋白(尤其是离子通道和GPCR)来说,仍然是一个重大挑战。MULTITM蛋白更难表达和纯化,并且通常会失去洗涤剂中的天然构象。MULTITM蛋白代表了自行车的一些最重要的目标,因此Howarth在蛋白质技术和蛋白质工程方面的专业知识可以促进这一挑战。Howarth组创建了Spytag,这是一种与间谍蛋白质混合后形成自发异肽键的肽。每个成分由常规20氨基酸组成,并且在不同条件下反应是快速而特异的(Keeble/Howarth PNAS 2019,Keeble和Howarth,Chem SCI 2020)。纳米盘是小蛋白,可以封装整体膜蛋白,形成一个含有天然膜脂质的环。生长抑素受体。纳米散发是在与清洁剂溶解度更接近细胞环境的环境中研究溶解的膜蛋白的变化性。然而,纳米盘面临着不稳定和缺乏受控组装的挑战,这些挑战抑制了它们对许多应用的使用,包括按噬菌体显示筛选粘合剂,对粘合剂的亲和力确定和冷冻剂以了解和优化自行车结合。将Spytag/Spycatcher技术与纳米盘结合起来,可以实现纳米盘的分子内环化,增强多性蛋白质的稳定性,并生成具有可调尺寸范围的Spyring-Nanodiscs,可适应于不同的膜蛋白和复合物。在这里,我们将首先验证E. coli表达的Spyring-nanodiscs从HEK 293S细胞中捕获,该单元具有感兴趣的Multitm靶标的自行车,其文献具有隔离和已知配体的先例,例如自行车和已知配体的特征是通过生物物理或生化测定法具有亲和力和特异性。APO和配体蛋白质结构也将通过冷冻研究进行研究。然后,我们将使用异肽交联和基于结构的设计采用蛋白质工程,合并
100% WWS 论文链接 2009 Jacobson,《能源与环境科学》 https://web.stanford.edu/group/efmh/jacobson/Articles/I/ReviewSolGW09.pdf 2009 Jacobson 和 Delucchi,《科学美国人》 https://web.stanford.edu/group/efmh/jacobson/Articles/I/sad1109Jaco5p.indd.pdf 2011 Jacobson 和 Delucchi,《能源政策》 https://web.stanford.edu/group/efmh/jacobson/Articles/I/JDEnPolicyPt1.pdf 2011 Delucchi 和 Jacobson,《能源政策》 https://web.stanford.edu/group/efmh/jacobson/Articles/I/DJEnPolicyPt2.pdf 2011 Hart 和 Jacobson,《可再生能源》 https://web.stanford.edu/group/efmh/jacobson/Articles/I/CombiningRenew/HartJacRenEnMar11.pdf 2012 Hart 和 Jacobson,《能源与环境科学》 https://web.stanford.edu/group/efmh/jacobson/Articles/I/CombiningRenew/HartEES12Online.pdf 2013 Jacobson 等人,《能源政策》 http://web.stanford.edu/group/efmh/jacobson/Articles/I/NewYorkWWSEnPolicy.pdf 2014 Jacobson 等人,《能源》 http://web.stanford.edu/group/efmh/jacobson/Articles/I/CaliforniaWWS.pdf 2014 Becker 等人,《能源https://web.stanford.edu/group/efmh/jacobson/Articles/Others/BeckerEnergy14.pdf 2015 Becker 等人,能源 https://web.stanford.edu/group/efmh/jacobson/Articles/Others/BeckerEnergy15.pdf 2015 Jacobson 等人,能源与环境科学 http://web.stanford.edu/group/efmh/jacobson/Articles/I/USStatesWWS.pdf 2015 Jacobson 等人,PNAS http://web.stanford.edu/group/efmh/jacobson/Articles/I/CombiningRenew/CONUSGridIntegration.pdf 2016 Jacobson 等人,可再生能源 http://web.stanford.edu/group/efmh/jacobson/Articles/I/WashStateWWS.pdf 2016 Frew 等人,《能源》 https://web.stanford.edu/group/efmh/jacobson/Articles/Others/16-Frew-Energy.pdf 2016 Frew 和 Jacobson,《能源》 https://web.stanford.edu/group/efmh/jacobson/Articles/Others/16-Frew-Energy-B.pdf 2017 Jacobson 等人,《焦耳》 http://web.stanford.edu/group/efmh/jacobson/Articles/I/CountriesWWS.pdf 2018 Jacobson 等人,《可再生能源》 http://web.stanford.edu/group/efmh/jacobson/Articles/I/CombiningRenew/WorldGridIntegration.pdf 2018 Jacobson 等人,《可持续城市与社会》 http://web.stanford.edu/group/efmh/jacobson/Articles/I/TownsCities.pdf 2019 Jacobson 等人,《一个地球》 http://web.stanford.edu/group/efmh/jacobson/Articles/I/143WWSCountries.pdf 2020 Jacobson 等人,《能源》 https://web.stanford.edu/group/efmh/jacobson/Articles/I/Megacities.pdf 2019 Jacobson,《智能能源》 https://web.stanford.edu/group/efmh/jacobson/Articles/Others/21-Wind-Heat.pdf 2021 Jacobson,《可再生能源》 https://web.stanford.edu/group/efmh/jacobson/Articles/Others/21-CountriesVRegions.pdf 2022 Jacobson 等人,可再生能源 https://web.stanford.edu/group/efmh/jacobson/Articles/I/21-USStates-PDFs/21-USStatesPaper.pdf
(1) O. Saboe, P.;孔特,E.;法雷尔,M.; C.巴赞,G.; Kumar, M. 将酶连接到电极接口的仿生和仿生方法。能源与环境科学2017,10(1),14-42。 https://doi.org/10.1039/C6EE02801B。 (2) 鲁伊斯,议员;阿拉贡内斯,AC;卡马雷罗,N.;维赫纳,JG;奥尔特加,M.;佐蒂,洛杉矶;佩雷斯,R.;奎瓦斯,JC;戈罗斯蒂扎,P.; Díez-Pérez, I. 单蛋白连接的生物工程。 J. Am.化学。苏克。 2017,139(43),15337–15346。 https://doi.org/10.1021/jacs.7b06130。 (3) Fereiro, JA;Yu, X.;Pecht, I.;Sheves, M.;Cuevas, JC;Cahen, D. 隧穿解释通过蛋白质连接实现高效电子传输。PNAS 2018,115 (20),E4577–E4583。https://doi.org/10.1073/pnas.1719867115。 (4) Willner, B.;Katz, E.;Willner, I. 通过纳米技术手段实现氧化还原蛋白的电接触。Current Opinion in Biotechnology 2006,17 (6),589–596。https://doi.org/10.1016/j.copbio.2006.10.008。 (5) Heller, A. 氧化还原酶的电气布线。Acc. Chem. Res. 1990 ,23 (5),128–134。https://doi.org/10.1021/ar00173a002。(6) Boussema, F.;Gross, AJ;Hmida, F.;Ayed, B.;Majdoub, H.;Cosnier, S.;Maaref, A.;Holzinger, M. 限制在碳纳米管基质中的 Dawson 型多金属氧酸盐纳米簇可作为酶促葡萄糖生物燃料电池阳极和葡萄糖生物传感器的有效氧化还原介质。生物传感器和生物电子学 2018 ,109,20–26。 https://doi.org/10.1016/j.bios.2018.02.060。 (7) Algov, I.;Grushka, J.;Zarivach, R.;Alfonta, L. 高效黄素-腺嘌呤二核苷酸葡萄糖脱氢酶与最小细胞色素 C 结构域融合。J. Am. Chem. Soc. 2017 , 139 (48), 17217–17220。https://doi.org/10.1021/jacs.7b07011。 (8) Yan, Y.-M.;Baravik, I.;Yehezkeli, O.;Willner, I. 集成电接触葡萄糖氧化酶/碳纳米管电极用于生物电催化检测葡萄糖。J. Phys. Chem. C 2008 ,112 (46),17883–17888。https://doi.org/10.1021/jp805637e。(9) Riedel,M.;Parak,WJ;Ruff,A.;Schuhmann,W.;Lisdat,F。光作为生物催化的触发器:通过氧化还原聚合物将黄素腺嘌呤二核苷酸依赖性葡萄糖脱氢酶光子连接到量子点敏化的反蛋白石 TiO 2 结构。ACS Catal。2018 ,8 (6),5212–5220。https://doi.org/10.1021/acscatal.8b00951。(10) Zhao,F.;Conzuelo,F.;Hartmann,V.;Li,H.;Nowaczyk,MM; Plumeré,N.;Rögner,M.;
全部教授,心理药理学研究所(IOP),中央心理健康研究所,医学院曼海姆学院和生物科学学院,海德堡大学,我是一名基础,临床前和翻译成瘾研究者。我的整体野心是了解多系统级别上的奖励过程,成瘾和合并症,并相应地制定诊断,预防和治疗策略。我的优势在于多系统水平的方法,具有高度的跨学科性,以及我与物理学家,化学家,数学家,临床医生和制药行业密切协调的能力。因此,我确实将自己视为一个所谓的T研究者,对研究问题的方法学方法非常广泛,并且在必要时可以深入训练,以更好地理解。我只相信科学发现,如果我从不同的研究角度,不同的方法和系统级别获得收敛证据。如果计算模型可以预测或通过我的实验发现收敛或收敛。我在Tübingen和慕尼黑大学学习生物学,并在Martinsried的Max Planck Institute(MPI)进行了我在行为药理学和神经化学方面的早期培训。Albert Herz和Toni Shippenberg很早就成为了我的导师,我很幸运能在正确的时间处于正确的位置 - 这是当时全球阿片类药物研究的三个热点之一。我在我的博士学位期间进行了一次开创性发现,特别是内源性阿片类药物的相反作用对奖励途径的调制识别。这一发现对于理解神经化学水平上的奖励过程至关重要,并为使用阿片类药物拮抗剂(例如纳曲酮和纳米芬)奠定了机械基础,以治疗酒精依赖性患者的复发。描述了这一发现的两篇论文(PNA中的一个)成为了2000多个引用的引文经典。在1990年,我搬到了慕尼黑的精神病学MPI(当时是弗洛里安·霍尔斯博尔(Florian Holsboer)),并成为成瘾研究小组的负责人,并获得了药理学和毒理学的讲座。该研究所的主要重点是CRH和与压力有关的疾病。尽管CRH-R1受体已经克隆,但其体内功能的表征却没有很好。与Wolfgang Wurst一起,我们开发了第一个CRH-R1敲除小鼠模型,该模型证实了受体在应激反应和焦虑行为中的作用。通过这项工作,我们甚至在Salk Institute(在1981年发现CRH发现)的Wyle Vale小组的研究工作中,并发表了我们在自然遗传学方面的开创性工作。在后续研究中,我们发现了一个非常令人惊讶的发现,CRH-R1受体的缺失导致压力诱导的饮酒量增强,与教条形成鲜明对比的是,受体的缺乏或阻断应减少甚至消除应激诱发的作用。尽管这项工作是在科学上发表的,并因其在啮齿动物中的开创性基因X环境互动发现而获得汉斯·克雷布斯爵士奖,但
主办机构NOVA科学学校和技术-LAQV-REQUIMTE研究小组和URL BIO(化学)过程工程-https://laqv.requimte.pt/research/research/research-groups/106-bio_cheme_chemical_chemical_chemical_chemical_process_engineering supportor(name and e-mail)主管Ana Almeida是一名研究人员,由Biologia Instituto de Biologia实验性ETecnológica(IBET)从07/2022起在NOVA科学技术学院(FCT -Nova)工作的Searcularmine欧洲项目(FCT -NOVA)工作,并负责为孟买孟布拉纳群岛先进的实验室负责。Cenimat | i3n合作者的正式成员Laqv@Requimte,2个成本动作的成员(Eutopia - CA17139和Phobios - CA21159),以及DynacellCollect Project的首席研究员(2022.01619.PTDC),由FCT与250K e fcct and 2500k一起资助。她在加工和开发新材料的领域参与了13个国家和国际科学项目。,她获得了Nova(Lisboa大学)的“响应式和功能材料的纤维素丝和功能材料”的材料科学与工程博士学位(10/2021)。开发的研究工作的重点是隔离和表征从植物中提取的纤维素细丝和细丝网络。在2009年完成了生物技术学硕士学位,并在2007年完成了应用化学NOVA的BSC。她从09/2008到09/2011在ITQB/IBET工作。2012年,她开始在Cenimat工作,直到06-2022。从07/2022开始获得博士学位后,她一直在LAQV@Requimte的初级研究员(化学)工艺工程 - 膜过程组工作。她已经出版了1本书分会(Elsevier);如果期刊(即PNAS,高级材料)(在前封面上突出显示),则有15份同行评审的论文(过去5年中的8篇论文,1个作为通讯作者)。参加了多次科学会议,有14个口头(5个被邀请)和21个海报演示。她从事外展活动,例如欧洲研究员的2017年之夜(示威者)和2022年(负责调查员),EncontroCiência'20(示威者),展览 @国家自然历史和科学博物馆 - 里斯本(组织成员)和液晶艺术展览会(组织成员)和Nova图书馆(组织成员)。她是欧洲项目的GA会议(2013年)和里斯本举行的第28届国际液晶会议的组织委员会成员,负责该计划(2018-2022)。她是SPCL(Sociedade Portuguesa de CristaisLíquidos)的创始成员和董事会成员,也是国际液晶学会的成员。她监督了2个BSC和5个MSC论文,并有6个正在进行的监督(2个BSC和4 MSC),并在FCT-Nova(例如聚合物物理学和化学)的理论和实践课程中演讲。她是3个学术陪审团的成员,2个作为主管,1个作为主要对手。她是第7期审查员的科学委员会的一部分,并作为客座编辑的1个。在2017年获得了谦虚的社会(IT)的适度会议赠款; 2019年《液晶杂志》编辑委员会(英国)的Luckhurst-Samulki奖; 2019年最高的论文在2018 - 2019年期间发表于I3N和2020年的会议赠款,该论文(美国)(美国)(美国)。https://iorcid.org/0000-0003-4984-0759https://iorcid.org/0000-0003-4984-0759
Patrick COUVREUR-Short 简历 Carreer 1972 年:比利时鲁汶天主教大学 (UCL) 药剂师 1975 年:伦敦大学学院制药科学博士 1976-1977 年:苏黎世联邦理工学院(瑞士)博士后研究职位 1978-1983 年:伦敦大学学院副教授 1980 年:《伦敦大学学院高等研究院 自 1984 年起:巴黎南大学(法国)药学正教授 2009-2010 年:著名的“法兰西学院”教授,“创新技术 Liliane Bettencourt”主席 2010 年起:“法国大学研究所”(IUF) 高级会员 职位 - 1998-2010: 董事“物理化学、制药技术和生物制药”系(UMR CNRS 8612),一个多学科研究机构,专门从事药物输送和靶向研究(110 名研究人员)。 - 1999-2006 年:“治疗创新”博士学院院长(300 名博士生) - 2005-2010 年:负责竞争力极“MEDICEN”内的“药物发现” 研究和主要研究成果 所进行的研究旨在发现和设计新的纳米药物,用于治疗肿瘤学、神经科学和细胞内耐药感染中的严重疾病。这项研究已取得以下成果: - 发表 578 篇国际出版物,其中一些发表在著名期刊上(2 篇《Nature Nanotechnology》、2 篇《Nature Materials》、2 篇《Nature Communications》、1 篇《Nature Reviews Bioengineering》、2 篇《Science Advances》、1 篇《PNAS》、3 篇《Angewandte Chemie》、7 篇《ACS Nano》、1 篇《Cancer Research》等), - 121 篇评论文章和书籍章节, - 94 项专利, - 在国际和国家会议的 385 次全会和受邀演讲, - 撰写了 8 本书, - 以及 98 篇博士论文 Patrick COUVREUR(Google Scholar H 指数 131;引用 78,000 和 Web of Science H 指数 105;引用 53,000)是高引用研究人员之一(Web of Science)。主要研究成果: - 1977年发现纳米技术可用于细胞内药物输送(Febs Letters 1977) - 1978年发现聚烷基氰基丙烯酸酯纳米粒子,这是第一种可供人体使用的可生物降解纳米粒子(J. Pharm. Pharmacol. 1979 及美国和欧洲专利 1978) - 首次发现可使用纳米胶囊口服胰岛素(Diabetes 1988) - 发现将阿霉素负载于聚烷基氰基丙烯酸酯纳米粒子上可克服多药耐药性并进行首次临床试验(British Journal of Cancer 1997、J. Hepatol 2005) - 用于药物输送的新型功能聚合物(Macromol.1997、JCR 2006、Macromol. 2008 a 和 b 及 ACS Nano 2012a) - 纳米粒子用于递送抗体寡核苷酸和 siRNA(BBRC 1992、Pharm Res 1992;BBA 1996;BBRC 2001;JCR 2005、Nucl. Ac. Res. 2008 和 J Med Chem 2011)- 使用 PEG 涂覆的聚烷基氰基丙烯酸酯纳米粒子进行眼部和脑部输送(IOVS 2002、Europ. J Neurosci. 2002;JPET 2002;Europ. J Immunol. 2004;CMLS 2005;Bioconj. Chem. 2005 a、J. Neurochem. 2005;CMLS 2007;J. Neurosci., 2009,ACS Nano 2012a 和 ACS Nano 2012b) - 立方体 (J Phys. Chem. B Letters 2005; JACS, 2006; JACS 2007 a 和 Accounts in Chem Res, 2011)