纳米载体在药物输送领域表现出了巨大的希望,并且在过去几十年中进行了广泛的研究。在DOST-ITDI,其材料科学纳米技术专家探索了来自土著纳米材料的多孔无机纳米载体的潜力,可用于药物递送系统,尤其是对于抗炎药。
本卷记录了 1998 年 4 月 13 日至 15 日在旧金山举行的 MRS 春季会议上举行的“结构应用的多孔和蜂窝材料”研讨会。一个多元化的国际专家小组聚集在一起,介绍和讨论多孔和蜂窝材料领域的最新发展,包括聚合物、陶瓷和金属基材料。研讨会的总体重点是正在开发的多孔材料,至少部分是用于结构应用。讨论了多孔和蜂窝材料的机械行为的理论方面,以及各种固体泡沫材料的具体机械性能。介绍了在结构中使用固体泡沫的设计原理,并展示了多孔和蜂窝材料的许多有希望的应用。介绍了有关固体泡沫制造和含有固体泡沫的零件生产的论文。研讨会的很大一部分内容是讨论不能归类为泡沫的新型多孔材料,例如空心球、热等静压和膨胀 (HICE) 材料和 QASAR 材料。关于这些新材料的论文涵盖了它们的制造、特性和潜在用途。研讨会表明,多孔和蜂窝状材料的开发和理解在过去十年中取得了重大进展,特别是在多孔金属材料领域。
1个学生,G.V.I.S.H.,Amravati(MS),印度2物理学系G.V.I.S.H. 通过使用纳米沉淀方法制备了添加低密度聚乙烯(LDPE)的聚乙烯乙二醇(PEG)的多孔微粒。 使用傅立叶变换红外光谱,X射线衍射,扫描电子显微镜表征了准备的粉末样品。四面红外转化(FTIR)光谱证实了LDPE中PEG的存在,PEG在LDPE中的效应在LDPE中观察到了X-射线的峰值(X-Ray衍射)。模式表明没有新的阶段形成。 扫描电子显微镜图像表明,聚乙烯乙二醇的浓度降低了聚集,并增加了聚乙烯微粒的球形程度。 关键字:LDPE/PEG微粒,FT-IR,X射线衍射,SEM。 简介微粒被定义为尺寸小于1000 µm且大于1 µm的结构,也可以从可生物降解和不可生物降解的材料中获得。 纳米沉淀,乳液扩散,双重乳液。 [1]聚乙烯(PE)是一种基于分子构象的可量身定制特性的广泛使用的塑料,其应用从膜包装和电气绝缘到容器和管道。1个学生,G.V.I.S.H.,Amravati(MS),印度2物理学系G.V.I.S.H.通过使用纳米沉淀方法制备了添加低密度聚乙烯(LDPE)的聚乙烯乙二醇(PEG)的多孔微粒。使用傅立叶变换红外光谱,X射线衍射,扫描电子显微镜表征了准备的粉末样品。四面红外转化(FTIR)光谱证实了LDPE中PEG的存在,PEG在LDPE中的效应在LDPE中观察到了X-射线的峰值(X-Ray衍射)。模式表明没有新的阶段形成。扫描电子显微镜图像表明,聚乙烯乙二醇的浓度降低了聚集,并增加了聚乙烯微粒的球形程度。关键字:LDPE/PEG微粒,FT-IR,X射线衍射,SEM。简介微粒被定义为尺寸小于1000 µm且大于1 µm的结构,也可以从可生物降解和不可生物降解的材料中获得。纳米沉淀,乳液扩散,双重乳液。[1]聚乙烯(PE)是一种基于分子构象的可量身定制特性的广泛使用的塑料,其应用从膜包装和电气绝缘到容器和管道。pe主要基于密度和分子分支的程度。在半晶体材料(如聚乙烯和聚氟乙烯)中,材料的响应取决于分子结合和体积分数,除了温度和应变速率外,还取决于结晶度的体积分数。这些材料可以被认为是由一个无定形相组成的分子网络,该相位包含具有随机定向的结晶石相的纠缠链,其作用为物理交联。[2]纳米沉淀,也称为反应降水,脱溶液,溶剂置换和溶剂转移,由Fessi et.Al.In 1989描述,是一种开发纳米颗粒和微粒的方法[1],但有关其他Polymers,包括Polyolefimers,有限的含量。由于开发的方法不使用添加剂(例如表面活性剂),因此它提供的颗粒没有杂质会诱导生物体的不良影响。需要控制纳米沉淀产生的\颗粒大小的方法。[3]此外,该方法不需要或低表面活性剂浓度。[4]纳米沉淀技术的主要原理是界面
治疗大骨缺损仍然是没有完美解决方案的临床挑战,这主要是由于合适的骨植入物无法获得。添加性生产(AM)可吸收的多孔金属提供了无与伦比的机会,以实现对骨可能性植入物的挑战性要求。首先,可以定制这种植入物的多尺度几何形状,以模仿人骨的微体系结构和机械性能。相互联系的多孔结构还增加了表面积,以促进骨细胞的粘附和增殖。最后,它们的吸收特性是可以调节的,可以在整个骨骼愈合过程中维持植入物的结构完整性,从而确保在需要时确保舒适的负载,并在完成工作后完全分解。这种特性的组合为完整的骨再生和重塑铺平了道路。在开发理想的多孔可吸收金属植入物时,彻底表征生物降解行为,机械性能和骨再生能力很重要。我们回顾了由选择性激光熔化(SLM)生产的可吸收多孔金属的最新,重点是几何设计,材料类型,加工和后处理。后一个方面对吸收行为,由此产生的机械性能和细胞相容性的影响也将被讨论。与其坚固的惰性对应物相比,AM可吸收多孔金属(APM)显示出许多独特的特性,并具有巨大的潜力,以进一步优化其应用特异性性能,这是由于其灵活的几何设计。我们进一步强调了为将来的骨科解决方案采用AM APM时面临的挑战。
1. 莱斯大学电气与计算机工程系,美国德克萨斯州休斯顿 77005 2. 莱斯大学应用物理项目,美国德克萨斯州休斯顿 77005 3. 莱斯大学生物工程系,美国德克萨斯州休斯顿 77005 4. 贝勒医学院神经科学系,美国德克萨斯州休斯顿 77030 摘要
氢作为''更有效的能量存储区域的真正范式转移,尤其是对于工业规模上的可再生能源''而IPCC的1.5 1 C报告7指出,氢必须作为限制全球变暖的燃料替代起着重要的作用,并导致能源密集型工业的排放减少。大规模的氢存储可以帮助减轻可再生能源产生,间歇性以及季节性和地理约束的主要缺点。可再生能源在很大程度上取决于季节性波动的大气事件(例如阳光水平和强度,风力8,9),当每年变化但稳定的能源需求结合使用时,会导致可再生能源过量或缺陷。因此,没有能源存储的可再生能源无法满足整个系统的能源需求。10,11
本技术说明描述了流体流体概念,这是一种用于地质碳储存研究的新实验室基础设施。高度控制且可调的系统可为模型验证,比较和预测提供了惊人的视觉物理基础真理,包括详细的物理研究二氧化碳的行为和储存机制及其在相关地质环境中用于地下碳存储的衍生物形式。描述了设计,仪器,结构方面和方法论。此外,我们在多孔媒体中共享有关构建,操作,流体注意事项和流体重置的工程学见解。新的基础设施使研究人员能够研究重复的CO 2注射之间的可变性,从而使Fluidflower概念成为敏感性研究的合适工具,可用于确定不同地质形成中碳存储参数的范围。
摘要广泛使用的达西定律指定流体流量的达西速度与驱动流动的压力梯度之间的线性关系。但是,研究表明,当压力梯度充分低时,在低渗透性多孔培养基(例如粘土和页岩)中,达西速度可以表现出非线性依赖性对压力梯度的依赖性。此phe-nomenon被称为低速性非darcian流或携带前流。本文对低渗透性多孔培养基中携带前流的理论,实验数据和建模方法进行了全面综述。审查首先概述了携带前流的基本机制,这些机制调节了独特特征,例如Darcy速度对压力梯度的非线性依赖性及其与流体 - 岩石相互作用的相关性。随后进行审查进行了详尽的汇编,对在各种低渗透性的土地材料中进行的实验研究进行了彻底的汇编,包括紧密的砂岩,页岩和粘土。接下来,审查了为了拟合和解释实验数据而开发的经验和理论模型和仿真方法。最后,审查强调了进行和解释携带前流实验的挑战,并提出了未来的研究方向。通过分析以前的实验研究,该综述旨在为寻求增强其对低渗透性土地材料中流体动态的研究人员和从业人员提供宝贵的资源。这提供了有关在众多天然和工程过程中应用前携带流量的应用,例如页岩油和天然气回收,低渗透性含水层中的污染物运输以及核废料的地质处理。