在过去的二十年中,现代智能社会见证了各种智能电动设备的广泛发展,包括可穿戴的小工具和无人机。技术进步的激增导致对可靠和高性能存储设备的需求不断增长。[1]尽管通过严格的研究和开发对电池的性能进行了显着增强,但许多电池仍然无法满足下一代储能设备的特定要求,例如灵活性,安全性和高充电率。作为具有众多优势的替代方案和有前途的候选人,超级电容器吸引了越来越多的关注。[2]纳米技术的快速演变为探索具有高功率密度和能量密度的各种超级电容器铺平了道路。其中包括利用双层机制[3]以及使用FARADIC机制的金属氧化物和基于聚合物的超级电容器的基于碳的超级电容器。[4]基于碳的超级电容器由于其高比表面积和良好的电子电导率而表现出了出色的特性。但是,由于其理论特异性低
在过去几十年中,多孔媒体的流量和对流传热方面的基本和应用研究受到了学术界和工业研究人员的关注。这是由于该研究领域在广泛的工程应用中的重要性,该应用涉及多孔材料,或者可以作为多孔介质建模。其中包括地理应用(即增强的地热系统和碳存储),生物系统,太阳能系统,金属泡沫热交换器,多孔燃烧器,航空航天系统的蒸腾冷却,电子设备的热管理以及聚合物电解质燃料电池(PEFCS)。应用的其他示例包括干燥技术,催化反应堆,组织置换,药物输送,晚期医学成像和用于组织工程的多孔脚手架。广泛的讽刺应用鼓励我们在该领域工作和研究多年,我们通过其中了解了有关多孔材料中对流传热的大量信息。在该领域进行了彻底的研究之后,我们发现在多孔媒体中在对流领域执行的数学,数字和实验方法和方法有很多,并且在此问题中现有书籍和出版物已经包括在内。尽管如此,在多孔媒体中(例如,多孔媒体中的热通量分叉),高级工程应用(例如燃料电池)和新的数值方法(例如,lattice boltzmann方法)尚未包含在现有的书籍中。因此,本书试图介绍和讨论多孔媒体中对流传热的这些新方面,最集中于实践方法及其高级应用。尽管我们已经做出了彻底的努力来涵盖多孔材料中对流的最重要和讽刺的方法,挑战和应用,但作者可能已经错过了一些方面。我们希望这本书为读者(学生,教授,科学家和工程师)提供实用的方法和应用,以及在多孔材料中对流传热领域中最富有成果的信息。总的来说,拟议中的书应该由3个部分和17章组成。第一节专门介绍了多孔媒体中对流(自然和强迫)的基础。第二节分配给了多孔介质的对流主题,其中将讨论多孔介质中的芯吸和干燥,双分散多孔介质,孔隙规模分析和晶格鲍尔茨曼方法的对流。第三节专门针对多孔媒体中对流的最新且有趣的应用。因此,在本节中,提出了新发现的工业应用程序。
Ulavathi S. Mahabaleshwar ca 乌克兰国家科学院单晶体研究所,Nauky Ave. 60,哈尔科夫 31001,乌克兰 b VN Karazin 哈尔科夫国立大学 4,Svoboda Sq.,哈尔科夫,61022,乌克兰 c 达万格雷大学 Shivagangotri 数学系,达万格雷,印度 577 007 *通讯作者:michaelkopp0165@gmail.com 收到日期:2022 年 9 月 23 日;修订日期:2022 年 10 月 30 日;接受日期:2022 年 11 月 3 日 纳米流体和微生物饱和的多孔介质中的热对流研究是许多地球物理和工程应用的重要问题。纳米流体和微生物混合物的概念引起了许多研究人员的兴趣,因为它能够改善热性能,从而提高传热速率。此特性在电子冷却系统和生物应用中都得到了广泛的应用。因此,本研究的目的是研究在垂直磁场存在下,多孔介质中的生物热不稳定性,该介质被含有旋转微生物的水基纳米流体饱和。考虑到自然和技术情况下都存在外部磁场,我们决定进行这项理论研究。使用 Darcy-Brinkman 模型,对自由边界的对流不稳定性进行了线性分析,同时考虑了布朗扩散和热泳动的影响。使用 Galerkin 方法进行这项分析研究。我们已经确定传热是通过没有振荡运动的稳态对流完成的。在稳态对流状态下,分析了金属氧化物纳米流体(Al 2 O 3 )、金属纳米流体( Cu 、Ag)和半导体纳米流体( TiO 2 、SiO 2 )。增加钱德拉塞卡数和达西数可显著提高系统稳定性,但增加孔隙度和改变生物对流瑞利-达西数会加速不稳定性的开始。为了确定热量和质量传输的瞬态行为,应用了基于傅里叶级数表示的非线性理论。在较短的时间间隔内,过渡的努塞尔特数和舍伍德数表现出振荡特性。时间间隔内的舍伍德数(质量传输)比努塞尔特数(热传输)更快达到稳定值。这项研究可能有助于海洋地壳中的海水对流以及生物传感器的构造。关键词:纳米流体、生物热对流、洛伦兹力、热泳动、布朗运动、旋转微生物、磁场 PACS:44.10.+i、44.30.+v、47.20.-k 1. 简介 土力学、地下水水文学、石油工程、工业过滤、粉末冶金、核能等领域的许多理论和实践研究都是基于对多孔介质流动物理学的研究。石油工程师和地球物理流体动力学家对多孔介质中的此类流动非常感兴趣。多孔介质中液层的热不稳定性问题尤为重要。Ingham 和 Pop [1] 以及 Nield 和 Bejan [2] 对大多数多孔介质对流研究进行了出色的综述。Vadasz [3] 在最近的一篇综述中详细研究了旋转多孔介质中的流体流动和传热问题。随着纳米技术的进步,尺寸小于一百纳米的物体已经发展起来。这种纳米尺寸的物体称为纳米颗粒。Choi [4] 建议将这些纳米颗粒悬浮在基液(称为纳米流体)中,以提高基液的导热性和对流传热。因此,纳米流体开始在工业中得到广泛应用,例如冷却剂、润滑剂、热交换器、微通道散热器等等。 Buongiorno [5] 广泛研究了纳米流体中的对流输送,并致力于解释在对流下观察到的额外传热增加。Tzou [6] 使用 Buongiorno 传输方程研究了纳米流体在从下方均匀加热的水平层中对流的开始,发现由于纳米颗粒的布朗运动和热泳动,临界瑞利数比普通流体低一到两个数量级。由于纳米流体在传热现象中具有显著的特性,因此需要研究多孔介质中的纳米流体。Kuznetsov 和 Nield [7]-[8] 使用 Brinkman 模型研究了充满纳米流体的多孔介质中热不稳定性开始的情况,其中考虑了布朗运动和纳米颗粒热泳动。他们发现,纳米颗粒的存在可能会显著降低或增加临界热瑞利数,这取决于基本纳米颗粒分布是上重还是下重。此外,Bhadauria 和 Agarwal [9] 以及 Yadav 等人 [10] 扩展了热不稳定性问题,包括纳米流体的应用十分广泛,例如润滑剂、热交换器、微通道散热器等等。Buongiorno [5] 广泛研究了纳米流体中的对流输送,并着重解释对流下观察到的额外传热增加。Tzou [6] 使用 Buongiorno 传输方程研究了纳米流体在从下方均匀加热的水平层中对流的开始,发现由于纳米颗粒的布朗运动和热泳动,临界瑞利数比普通流体低一到两个数量级。由于纳米流体在传热现象中具有显著的特性,因此需要研究多孔介质中的纳米流体。Kuznetsov 和 Nield [7]-[8] 使用 Brinkman 模型研究了饱和纳米流体的多孔介质中热不稳定性他们发现,纳米颗粒的存在可能会显著降低或增加临界热瑞利数,这取决于基本纳米颗粒分布是上重还是下重。此外,Bhadauria 和 Agarwal [9] 以及 Yadav 等人 [10] 扩展了热不稳定性问题,包括纳米流体的应用十分广泛,例如润滑剂、热交换器、微通道散热器等等。Buongiorno [5] 广泛研究了纳米流体中的对流输送,并着重解释对流下观察到的额外传热增加。Tzou [6] 使用 Buongiorno 传输方程研究了纳米流体在从下方均匀加热的水平层中对流的开始,发现由于纳米颗粒的布朗运动和热泳动,临界瑞利数比普通流体低一到两个数量级。由于纳米流体在传热现象中具有显著的特性,因此需要研究多孔介质中的纳米流体。Kuznetsov 和 Nield [7]-[8] 使用 Brinkman 模型研究了饱和纳米流体的多孔介质中热不稳定性他们发现,纳米颗粒的存在可能会显著降低或增加临界热瑞利数,这取决于基本纳米颗粒分布是上重还是下重。此外,Bhadauria 和 Agarwal [9] 以及 Yadav 等人 [10] 扩展了热不稳定性问题,包括
当样品返回舱进入地球大气层时,舱前会产生强烈的冲击波,舱体会受到严重的气动加热。烧蚀方法是保护舱体免受加热的有效热保护方法。未来,舱体预计会更大,再入速度也会更快。因此,舱体将受到更严重的气动加热。在本实验中,使用孔径不同的多孔碳(5 μm、10 μm 和 25 μm)和浸渍氰基丙烯酸酯的多孔碳作为试件。结果发现,不同试件的磨损时间和磨损行为存在差异。此外,通过使用自动位置控制系统进行实验,计算出有效烧蚀热,该系统可以检测试件的尖端并将其控制到目标位置。浸渍氰基丙烯酸酯(5 μm)的多孔碳的有效烧蚀热约为 2.8 MJ/kg。
基于逐层熔化和凝固的功能金属部件增材制造会受到高温加工的不利影响,例如残余应力大、机械性能差、不必要的相变和部件变形。在这里,我们利用粉末颗粒的动能形成固态结合,并克服与金属高温加工相关的挑战。具体来说,我们将粉末加速到超音速冲击速度(~600 m/s),并利用高应变率动态负载引起的塑性变形和软化,在远低于其熔点(1626 ° C)的温度下(800 ° C、900 ° C)对 Ti-6Al-4V 粉末进行 3D 打印。通过采用低于临界粉末冲击速度的加工条件并控制表面温度,我们创建了具有空间控制孔隙率的机械坚固多孔金属沉积物(表观模量 51.7 ± 3.2 GPa、表观压缩屈服强度 535 ± 35 MPa、孔隙率 30 ± 2%)。将固态 3D 打印 Ti-6Al-4V 的机械性能与通过其他增材制造技术制造的机械性能进行比较时,压缩屈服强度最高可高出 42%。固态打印多孔 Ti-6Al-4V 的后热处理改变了沉积物在压缩载荷下的机械行为。此外,3D 打印多孔 Ti-6Al-4V 被证明与 MC3T3-E1 SC4 鼠前成骨细胞具有生物相容性,表明这些材料具有潜在的生物医学应用。我们的研究展示了一种单步固态增材制造方法,用于生产比传统高温增材制造技术强度更高的生物相容性多孔金属部件。
通过对预碳化间苯二酚-甲醛球进行化学活化,合成了具有高度堆积六边形排列的多孔碳微球和 S/微球碳复合材料。硫代硫酸钠用作无害的活化剂、S 掺杂剂和硫前体。多孔微球具有较大的表面积(2060-2340 m 2 g -1 )和足够的微中孔率。它们还具有大量的硫杂原子(5-7 %)和高电子电导率(2.3-3.1 S cm -1 )。微球的紧密组织和适当的孔隙率使其在水性和有机电解质中工作的超级电容器中使用时能够实现具有竞争力的体积电容值(分别为 130 和 64 F cm -3 ),同时保持良好的倍率性能。此外,硫含量超过80%的硫/球形碳复合材料被测试用作锂硫电池正极材料,显示出高的硫利用率、大的体积容量值(768mAh cm -3 )和稳定的长期循环性能(每次循环的容量损失为0.086%)。
在过去的二十年中,现代智能社会见证了各种智能电动设备的广泛发展,包括可穿戴的小工具和无人机。技术进步的激增导致对可靠和高性能存储设备的需求不断增长。[1]尽管通过严格的研究和开发对电池的性能进行了显着增强,但许多电池仍然无法满足下一代储能设备的特定要求,例如灵活性,安全性和高充电率。作为具有众多优势的替代方案和有前途的候选人,超级电容器吸引了越来越多的关注。[2]纳米技术的快速演变为探索具有高功率密度和能量密度的各种超级电容器铺平了道路。其中包括利用双层机制[3]以及使用FARADIC机制的金属氧化物和基于聚合物的超级电容器的基于碳的超级电容器。[4]基于碳的超级电容器由于其高比表面积和良好的电子电导率而表现出了出色的特性。但是,由于其理论特异性低
摘要:研究了多孔硅 (PS) 表面二氧化硅 (SiO 2 ) 阳极形成过程中的光伏效应,旨在开发一种潜在的钝化技术,实现高效的纳米结构硅太阳能电池。PS 层是在含氢氟酸 (HF) 的电解质中通过电化学阳极氧化制备的。在室温下,在 HCl/H 2 O 溶液中通过自下而上的阳极氧化机制在 PS 表面形成阳极 SiO 2 层。通过调节阳极氧化电流密度和钝化时间来精确控制表面钝化的氧化层厚度,以在 PS 层上实现最佳氧化,同时保持其原始纳米结构。PS 层微观结构的 HRTEM 表征证实了 PS/Si 界面处的原子晶格匹配。研究了光伏性能、串联电阻和分流电阻对钝化时间的依赖关系。由于 PS 表面钝化充分,阳极氧化时间为 30 秒的样品实现了 10.7% 的最佳转换效率。外部量子效率 (EQE) 和内部量子效率 (IQE) 表明由于 PS 的抗反射特性,反射率显著下降,而由于 SiO 2 表面钝化,则表明性能优越。总之,PS 太阳能电池的表面可以通过电化学阳极氧化成功钝化。
本卷记录了 1998 年 4 月 13 日至 15 日在旧金山举行的 MRS 春季会议上举行的“结构应用的多孔和蜂窝材料”研讨会。来自世界各地的专家齐聚一堂,介绍和讨论了多孔和蜂窝材料领域的最新发展,包括聚合物、陶瓷和金属基材料。研讨会的重点是正在开发的多孔材料,至少部分是用于结构应用。讨论了多孔和蜂窝材料的机械行为的理论方面,以及各种固体泡沫材料的具体机械性能。介绍了在结构中使用固体泡沫的设计原理,并展示了多孔和蜂窝材料的许多有前景的应用。介绍了有关固体泡沫制造和含有固体泡沫的零件生产的论文。研讨会的很大一部分内容是讨论不能归类为泡沫的新型多孔材料,例如空心球、热等静压和膨胀 (HICE) 材料和 QASAR 材料。关于这些新型材料的论文涵盖了它们的制造、特性和未来用途。研讨会表明,多孔和蜂窝状材料的开发和理解在过去十年中取得了长足进步,特别是在多孔金属材料领域。