摘要:使用Vo 2在智能窗口中进行辐射冷却 - 一种动态的热管理材料,由于其太阳能和发射率可调性,因此具有增强建筑物节省能源的潜在兴趣。然而,目前缺乏与多层系统中VO 2薄片微结构对发射率调节的影响有关的研究。本研究通过操纵VO 2薄膜中的孔隙率来处理VO 2/Znse/iTo/glass Fabry- perot(F – P)型腔系统的热色素和发射率性能。该设备是通过商业上可行的物理蒸气沉积方法(例如溅射和热蒸发)制造的,最适合批量生产。用多孔VO 2的优化样品提供了增强的长波红外(LWIR)发射率≥0.4≥0.4≥0.4,与密集的VO 2相比,保持高可见透明度T LUM(AVG)约为41%。进行有限的差异时间域(FDTD)模拟,以进一步了解效果
地质储氢,例如在枯竭的天然气田 (DGF) 中,可以克服可再生能源领域的供需不平衡,促进向低碳排放社会的过渡。一系列地下微生物利用氢,这可能对氢的回收、堵塞和腐蚀具有重要意义。我们收集了英国大陆架 75 个 DGF 的温度和盐度数据,并根据一组新的微生物生长限制,根据不利微生物影响的风险绘制了它们用于储氢的适用性。风能和太阳能运营能力以及海上天然气和凝析油管道基础设施的数据与微生物风险分类叠加,以优化绿色氢生产、运输基础设施和地下储存的地理中心。我们建议将氢气储存在 9 个 DGF 中,这些 DGF 由于温度 > 122 ◦ C 而没有微生物风险,或者储存在 35 个低风险 DGF 中,温度 > 90 ◦ C。我们建议不要使用温度 < 55 ◦ C 的高风险 DGF (9 DGF)。与可再生能源生产中心和适合重新用于运输氢气的废弃管道相结合,表明北海南部无风险和低风险的 DGF 是最适合储氢的候选地。我们的研究结果为英国地质储氢的选址提供了建议。我们的方法适用于全球任何地下多孔岩石系统。
在通常称为升华生长的物理气相传输 (PVT) 中,保持在特定温度下的源材料会升华,其蒸气通过扩散和对流传输到保持在较低温度下的籽晶,在那里可以结晶。碳化硅 (SiC)、氮化镓 (GaN)、氮化铝 (AlN)、氧化锌 (ZnO) 和其他材料作为下一代功率器件引起了人们的关注。这些单晶制造工艺涉及高温和恶劣环境,使用氨和氯化氢等腐蚀性气体。
在此情况下,我们最近建议使用四钌取代的多金属氧酸盐 (POM) Na 10 [Ru IV 4 ( β -OH) 2 ( µ -O) 4 (H 2 O) 4 ( γ -SiW 10 O 36 ) 2 ] (Ru 4 POM),它作为聚合物膜的防污剂表现出独特的行为。[3,4] POM 是 Mo、W 和 V 等金属的最高氧化态下的过渡金属氧化物。它们具有广泛的结构拓扑和多功能的化学和物理特性,特别是在催化应用方面[5],并且可以集成到广泛的功能支架 [6] 和薄膜中。[7] Ru 4 POM 具有突出的氧活性,这可以在水氧化过程中观察到[8],以及 H 2 O 2 催化歧化为 H 2 O 和 O 2 的过程中。 [9] 后一种过程很容易实现,不需要使用外部光/电触发器,也不需要调节 pH 值或温度,因此,只要将 Ru 4 POM 集成到小型设备或膜中,就可以很容易地利用它产生氧气泡。[10] 这些代表了一种有用的机械剂,有助于去除不可逆的污垢颗粒,也就是那些对传统膜清洗有抵抗力的颗粒,这些颗粒会堵塞膜孔并使其重复使用更加困难。在将 POM 嵌入聚合物基质的可能策略中[11],我们之前已经利用了所谓的表面活性剂包覆 POM(SEP)[12],通过反阳离子交换,旨在用长的两亲性四烷基铵链取代钠阳离子。具体来说,i)二甲基十八烷基铵 (DODA) 用于促进 Ru4 POM 在 CHCl3 中的溶解度,并允许与聚醚醚酮 (PEEK-WC) 形成合适的聚合物共混物;[3] ii)可聚合阳离子丙烯酰氧十一烷基三乙基铵 (AUTEA) 用作 POM 反离子和可聚合双连续微乳液 (PBM) 的组分,后者用作多孔聚醚砜 (PES) 膜表面的功能涂层。 [4] 然而,尽管具有良好的自清洁性能,尤其是对于后一种系统,但用于制备这些 SEP 的阳离子仍然很昂贵。在此,我们探索了使用埃洛石纳米管 (HNT) 作为支架,从而为该领域提供不同的视角
基于过渡金属氧化物[4]的Docapators。但是,这两种类型的超级电容器都是完美的。对于基于碳的EDLC,尽管它可以提供更高的功率密度,短充电和放电过程以及良好的稳定性,但能量密度限制在电极/电解质界面处有限的电荷分离以及活性材料的可用表面积[5]。对于依靠金属氧化物(仅用于MNO 2)的假性数据电容器,它具有较高的理论能力,自然丰度和环境能力,但循环寿命短和低功率密度[6]。因此,将碳基材料和MNO 2的复合材料是最佳选择。许多努力已经在这一方面进行了。例如,基于复合材料的超级电容器,例如石墨烯/MNO 2/碳纳米管(CNTS)[7],激光标记的石墨烯MNO 2 [8],MNO 2 @CNTS/CNTS [9] [9],都可以实现更高的能力,而大多数可以为其提供更大的功能,但可能会构成大多数的应用程序,因此,他们的范围很高,因此[10]的范围很高。因此,找到具有较高兼容性和低成本的碳材料作为复合材料的基础很重要。生物量前体,可以产生具有分层多孔结构和高表面积的活性碳(AC)的自然元素,满足了先前对自然界中的友好性和丰富性的要求[11]。如今,水热合成和电沉积法是制备生物碳/MNO 2复合材料的主要方法[12]。但是,这些方法不适合大规模生产。为了进一步降低生产成本大规模商业应用,一种可行的方法是将纳米结构化的MNO 2固定在红薯衍生的碳框架(SPCF)中,通过低体温溶液的生长技术,以生成SPCF,以产生与MNO 2 Nano 2 Nanopartects同步负载的SPCF。生成的复合材料SPCF/MNO 2显示出具有高特异性的电容性能(0.5 A/G时为309 f/g),并且具有良好的放电速率能力(在20 A/G时为94 f/g)。这些特性证明了SPCF/MNO 2复合材料作为超级电容器的竞争电极材料。
辅助结构是具有负poisson比率的材料:拉伸时,它们垂直于施加力[26,29],这是看似违反直觉的特性。辅助材料由于其出色的休克吸收,断裂韧性或振动吸收而发现了多个领域的应用[61,51,25,30,49,45]。大量研究致力于设计辅助机械材料[25,12,58],这些材料从其小规模几何形状的特定布置中得出了其物理特性。最近的制造技术可以制造复杂的小规模结构,因此可以制造辅助材料。随机材料具有一些显着的优势。In particular, they are more resilient to fabrication-related symmetry-breaking imperfections [ 44 ], can smoothly and seamlessly grade material properties [ 28 ], are well suited to manufacture isotropic structures [ 40 , 21 ], are excellent candidates for energy-absorbing applications [ 10 , 39 , 23 ], and allow to compute the material geometry efficiently [ 34 ].虽然重复的周期性结构定义了大多数辅助材料,但独特的研究线对随机辅助材料感兴趣[36],因为它们比周期性结构具有某些优势[46,62,27]。辅助聚合物泡沫[29,8]在80年代报道,并广泛用于工业应用中。细胞泡沫的几何形状通常是理想化的,并用Voronoi图[17]进行建模,一些研究辅助泡沫的作品是从建模获得辅助泡沫的最常见过程是压缩一个偶然的透明细胞泡沫,以迫使细胞肋骨扣紧,从而产生一个加热到其软化温度的恢复结构[9,1]。
摘要:在物联网黎明时,对于储能的三维电极,越来越重要。的心脏是大量的微电子设备,需要嵌入能量收割机和能量存储组件以确保自治。在这项研究中,我们通过简单的优化电沉积过程开发了多孔金属微观结构及其与新的Ruo X N Y S Z材料的共形涂层。带有纳米端网络的微孔结构显示出较高的面积电容(电极为14.3 f cm -2,全溶剂固定状态的微蛋白酶酸一小度为714 mf cm -2)和稳定的性能(5000个周期后保留> 80%)朝H +存储。也观察到具有高面积容量(5 mAh cm -2)和速率特征(3C时1.5 mAh cm -2)的显着LI +存储能力。这些结果加上便捷的合成策略,因此可以为微生物和微生物电容器大规模生产3D多孔电极提供灵感。
1) 新加坡南洋理工大学电气与电子工程学院,50 Nanyang Avenue 639798,新加坡。2) 韩国机械材料研究所纳米融合机械研究部,韩国大田儒城区 34103,韩国。3) 德克萨斯大学阿灵顿分校电气工程系,德克萨斯州阿灵顿 76019,美国。4) 伊利诺伊大学厄巴纳-香槟分校电气与计算机工程系和 Holonyak 微纳米技术实验室,伊利诺伊州厄巴纳 61801,美国 关键词。金属辅助化学蚀刻;多孔 Ge;抗反射;
摘要:由于对环保产品的需求不断增长,锂离子电池(LIB)已广泛关注作为一种储能解决方案。随着全球对清洁和可疑能源的需求,Libs的社会,经济和环境意义变得越来越广泛地认可。lib由阴极和阳极电极,电解质和分离器组成。值得注意的是,LIB中的分离器,主要由多孔膜材料组成的关键和必不可少的成分,值得研究的关注。因此,研究人员已努力降低了创新的系统,从而提高了分离器绩效,加强安全措施并解决了普遍的限制。在此,本综述旨在为研究人员提供有关电池分离器膜的全面内容,包括性能要求,功能参数,制造协议,科学进步和整体绩效评估。特别是,它研究了采用各种常用或新兴聚合物材料的多孔膜设计,制造,修饰和优化方面的最新突破。此外,本文提供了有关LIB应用的基于聚合物的复合膜的未来轨迹的见解,以及等待科学探索的潜在挑战。开发的坚固和耐用的膜在各种应用中表现出了卓越的效率。因此,这些提议的概念为减少废物材料,降低过程成本并减轻环境足迹的循环经济铺平了道路。
缓解温室气体排放,尤其是CO 2,突出了对有效CO 2捕获技术的关键需求。这是由于它们在气候变化中的重要作用及其对全球生态系统和人类福祉的深远影响。活化的碳已经成为CO 2捕获的有前途的候选者。在这项研究中,活化的碳是由在700 - 1100℃范围内在各种温度下碳化的木屑合成的,随后使用CO 2激活。通过SEM,FESEM,XRD,TGA和FTIR技术进行了全面的特征,以评估这些特性。结果表明,在1000℃下的碳化产生了带有高级和微孔结构的活化碳,其表面积,孔体积和孔径分别为1651.34 m 2 /g,0.69 cm 3 /g,分别为0.69 cm 3 /g和<1.76 nm。值得注意的是,这种活化的碳在25℃和1 bar时表现出有希望的CO 2摄取9.2 mmol/g。此外,超过10个周期的显着可回收性证明了其实用CO 2捕获应用的潜力。此外,合成的活性碳在N 2(85/15 V/V)上表现出高选择性的高选择性,在1 bar和25°C下达到40.2,这些发现表明了AS-AREG IACKERACTAICTAICTACTIED CARBON作为所需的候选候选和选择性CO 2捕获的可行性,以促进CO的努力,从而促进了Emigation co的努力。