姜黄素 (Cur) 是从姜黄 (姜黄) 根茎中分离出来的天然多酚化合物,可作为高效生物活性剂治疗多种疾病,如糖尿病、癌症、关节炎和神经系统疾病 1 (图 1)。Cur 的治疗效果主要归因于其抗炎、抗氧化,尤其是抗致癌活性。Cur 已成功用于预防临床癌症,尤其是乳腺癌。2,3 最近,对晚期和转移性乳腺癌患者进行了一项临床试验研究,以评估 Cur 与紫杉醇联合使用的安全性和有效性。4 事实上,Cur 通过诱导活性氧 (ROS) 的产生和增加癌细胞凋亡来抑制癌细胞的生长。5,6 Cur 表现出很高的安全性
摘要:锂离子电池(LIB)性能可能会受到复杂电极微结构的性质的显着影响。几乎所有LIB电极中存在的碳粘合剂结构域(CBD)用于增强机械稳定性和促进电子传导,并了解CBD相微结构以及它如何影响复杂耦合的传输过程对LIB性能优化至关重要。在这项工作中,首次详细研究了CBD阶段中微孔度的影响,从而深入了解CBD微结构与电池性能之间的关系。为了研究CBD孔径分布的效果,使用随机场方法在硅中生成多相电极结构,包括实践中看到的双峰孔径分布和具有可调孔尺寸和可变传输特性的微孔CBD。大孔的分布和微孔CBD相显着影响模拟的电池性能,其中电池的特定容量随着CBD相的微孔力的增加而提高。关键字:锂离子电池(LIB),碳粘合剂域(CBD),电极微观结构,随机方法,微型质量
人类文明的进步取决于各种材料的发展。现代科学的建立导致了合成材料的快速发展。但是,迫切需要增加能源需求和环境污染,需要寻找新材料来解决能源和环境危机。碳本质上是极富丰富的元素,为地球上所有生命提供了基础(Li等,2008; Toth等,2016)。碳原子在核外有六个电子,其最外面的电子排列为2 s 2 2 p 2,显示出强大的形成共价键的能力(Krueger,2010)。多孔碳材料具有优势,例如化学稳定性,低密度,高导热率,高电导率和高机械强度(Gallo,2017)。多孔碳材料还具有较大的特定表面积,可调节的孔径和功能组,并且可以以相对较低的成本从多种前体制备。近年来,许多研究人员致力于多孔碳的合成和应用(Ang,2019; Liu,2019; Liu,2020a; Hwang,2020; Raj,2021)。取决于孔径分布,碳材料的孔结构可以分为三类,即微孔(孔径<2 nm),中孔(2 nm <孔径<50 nm)和大孔(孔径> 50 nm)(VU,2012年)。多孔碳材料的孔结构的大小对它们在实际应用中的性能产生了重大影响。重要的是,进一步讨论了碳材料的未来方向。由于这些优势,碳材料被广泛用于吸附范围(HE,2019年),催化(Dong等,2020)和储能(Peng,2019年)。本文主要引入碳材料的合成和应用,并描述了当前碳材料的主要改进思想(图1)。
地质储氢,例如在枯竭的天然气田 (DGF) 中,可以克服可再生能源领域的供需不平衡,促进向低碳排放社会的过渡。一系列地下微生物利用氢,这可能对氢的回收、堵塞和腐蚀具有重要意义。我们收集了英国大陆架 75 个 DGF 的温度和盐度数据,并根据一组新的微生物生长限制,根据不利微生物影响的风险绘制了它们用于储氢的适用性。风能和太阳能运营能力以及海上天然气和凝析油管道基础设施的数据与微生物风险分类叠加,以优化绿色氢生产、运输基础设施和地下储存的地理中心。我们建议将氢气储存在 9 个 DGF 中,这些 DGF 由于温度 > 122 ◦ C 而没有微生物风险,或者储存在 35 个低风险 DGF 中,温度 > 90 ◦ C。我们建议不要使用温度 < 55 ◦ C 的高风险 DGF (9 DGF)。与可再生能源生产中心和适合重新用于运输氢气的废弃管道相结合,表明北海南部无风险和低风险的 DGF 是最适合储氢的候选地。我们的研究结果为英国地质储氢的选址提供了建议。我们的方法适用于全球任何地下多孔岩石系统。
癌症是全球主要死亡原因之一,化疗仍然是主要治疗方法。1 在传统医学中,癌细胞会发生凋亡;然而,这些治疗的效果是非选择性和非特异性的,健康的正常细胞也会受到损害,从而导致一些副作用,如脱发、呕吐和癌症疼痛。2 – 4 近年来,据报道,各种新兴的癌症治疗方法可以改善传统药物治疗,例如光动力疗法 (PDT)、5 光热疗法 (PTT) 6 和纳米颗粒药物输送系统。7 PDT 是一种光疗法,涉及光和光敏剂与氧结合使用以诱导细胞死亡。最近的研究报告称,将 Eu 3+ 离子作为光敏剂掺入纳米粒子中并用近红外光照射可导致材料产生活性氧 (ROS),表明纳米粒子具有
抽象巨噬细胞在炎症过程的开始,维持和过渡中至关重要,例如异物反应和伤口愈合。安装证据表明,物理因素还会在体外和体内调节巨噬细胞的激活。2D体外系统表明,将巨噬细胞限制为小区域或通道可调节其表型,并改变其对已知炎症剂(如脂多糖)的反应。但是,探索尺寸和孔径如何影响巨噬细胞表型。在这项工作中,我们研究了巨噬细胞限制在微孔退火颗粒支架(MAP)中时M1/M2极化的变化,这些粒子是由退火球形微凝胶产生的颗粒状水凝胶。我们设计了三种类型的地图凝胶,分别包括40、70和130 µm直径的粒径。颗粒大小,该输出分析了MAP凝胶中3-D孔的特性。由于构建块粒子的尺寸与最终支架内部的孔径相关,因此我们的三种脚手架类型使我们能够研究空间限制程度如何调节嵌入式巨噬细胞的行为。在空间上限制了骨尺寸的巨噬细胞在细胞尺度上的巨噬细胞导致炎症反应水平降低,这与细胞形态和运动性的变化相关。引言巨噬细胞是许多伤害和疾病的核心1。这些状态可以简化为从促炎(M1)到促育(M2)表型2,3的频谱。这个因素在典型的炎症事件中,巨噬细胞是最早到达并偏振各种激活状态以执行特定功能的巨噬细胞之一。通常,M1表型与炎症的启动和维持有关,而M2表型与炎症的分辨率和再生阶段4密切相关。除了在表型中及时过渡的内在分化途径外,巨噬细胞还适应了来自相邻细胞的微环境线索和居住在5的细胞外基质。其他细胞(例如IFN-γ或IL-4)分泌的生化因子可以将巨噬细胞引导到促炎或育次育进行表型6。这些常见可溶性因子背后的分子机制及其对巨噬细胞的影响已得到广泛研究。但是,物理信号调节巨噬细胞激活的机制的探索较少。在生物材料领域,研究人员已经测试了广泛的材料特性对巨噬细胞调节的影响,以追求更好的生物相容性。例如,通过增加亲水性来修饰表面修饰可减少巨噬细胞的附着,而用细胞结合配体进行装饰表面偏向巨噬细胞极化10-13。了解控制表型巨噬细胞变化的特定机械传输机制将指导未来的生物材料设计并获得深远的生理意义。空间限制是在组织或材料支架中调节巨噬细胞反应的众所周知的参数。地形设计将巨噬细胞迫使伸长的细胞形状被证明可促进促增再效的M2表型14。通过使用微图案表面,微孔底物和细胞拥挤来诱导空间限制,研究人员能够防止小鼠骨髓来源的巨噬细胞或RAW264.7细胞扩散,从而抑制晚期的脂多糖(LPS)晚期(LPS)相关的转录程序和细胞质的表达15。肌动蛋白聚合在狭窄空间内的巨噬细胞中受到限制,这降低了依赖于肌动蛋白的转录副因素,肌动蛋白相关的转录因子-A 15。
由于纳米粒子具有高比表面积和高表面活性,因此被广泛应用于不同的生物医学应用。7 纳米级载体由于其高稳定性、简便的化学功能、高效的细胞内化和高负载能力,在药物输送方面具有极大的吸引力。8 最近,人们还考虑开发具有不同表面化学和新颖能力的智能多功能纳米平台。9 在此背景下,利用靶向剂(尤其是抗体和适体)进行表面功能化,已被广泛用于高效、特异性地靶向递送纳米载体。10 用于同时诊断和治疗疾病的治疗诊断纳米平台的设计和开发是纳米技术的另一项杰出成就。11
碳作为原位H 2 O 2 Generation的一种有吸引力的电极材料[4-10],鉴于其对两电子ORR的催化活性以及对寄生氢反应(HER)的催化性行为。 [11]此外,具有成本效益的碳材料具有高比表面积,较大的孔隙率,电导率和热稳定性以及化学稳定性,这使它们在贵金属及其合金方面具有优势,尤其是用于水处理。 通常,石墨板,石墨毛毡,活性炭纤维和碳毡用作水处理的阴极。 [13]但是,这些电极需要通过引入更多的cacta活性和选择性的部分来进行有效的H 2 O 2产生。 [12,13]此外,大多数活化的碳材料都是粉状的,需要与聚合物粘合剂(例如聚氟乙烯(PTFE))混合,以将其加工到电极组件中。 [14–16]这些荧光化合物被用作粘合剂,不仅可以阻止碳的活跃位点,而且还增加了通过从电极表面释放的不良释放来增加Sec-ondary污染的风险。 [10,17]此外,在适用于两电子氧还原反应(ORR)的施加潜力下,碳电极上Fe 2 +的再生相对较慢,导致碳作为原位H 2 O 2 Generation的一种有吸引力的电极材料[4-10],鉴于其对两电子ORR的催化活性以及对寄生氢反应(HER)的催化性行为。[11]此外,具有成本效益的碳材料具有高比表面积,较大的孔隙率,电导率和热稳定性以及化学稳定性,这使它们在贵金属及其合金方面具有优势,尤其是用于水处理。通常,石墨板,石墨毛毡,活性炭纤维和碳毡用作水处理的阴极。[13]但是,这些电极需要通过引入更多的cacta活性和选择性的部分来进行有效的H 2 O 2产生。[12,13]此外,大多数活化的碳材料都是粉状的,需要与聚合物粘合剂(例如聚氟乙烯(PTFE))混合,以将其加工到电极组件中。[14–16]这些荧光化合物被用作粘合剂,不仅可以阻止碳的活跃位点,而且还增加了通过从电极表面释放的不良释放来增加Sec-ondary污染的风险。[10,17]此外,在适用于两电子氧还原反应(ORR)的施加潜力下,碳电极上Fe 2 +的再生相对较慢,导致
电能存储是大规模部署和整合风能、太阳能等可再生但间歇性能源的重要组成部分。[1] 液流电池 (RFB) 是一种很有前途的电网级储能技术,由于其可扩展性高、放电时间长、储能与发电分离以及运行固有安全等特点,为深度脱碳提供了许多高价值机会。[2] 传统的液流电池采用低丰度金属离子氧化还原对,如钒,这与技术挑战有关,包括相对较低的能量密度以及高成本和环境问题,限制了它们广泛的商业成功。 [2–4] 近来,有机和有机金属氧化还原活性材料,如醌、[5] 吩嗪、[6] 氮氧自由基、[7] 紫精、[7,8] 芴酮、[9] 有机铁配合物、[10,11] 及其
本技术说明描述了流体流体概念,这是一种用于地质碳储存研究的新实验室基础设施。高度控制且可调的系统可为模型验证,比较和预测提供了惊人的视觉物理基础真理,包括详细的物理研究二氧化碳的行为和储存机制及其在相关地质环境中用于地下碳存储的衍生物形式。描述了设计,仪器,结构方面和方法论。此外,我们在多孔媒体中共享有关构建,操作,流体注意事项和流体重置的工程学见解。新的基础设施使研究人员能够研究重复的CO 2注射之间的可变性,从而使Fluidflower概念成为敏感性研究的合适工具,可用于确定不同地质形成中碳存储参数的范围。