特定的电能消耗为(11.5 - 13 kWh/kg SI),进入该工艺的碳材料代表相似的能源贡献。将大约一半的能量保留为Si金属中的化学能。碳足迹范围从4.7 kg CO 2 /kg Si到16千克CO 2 /kg Si),具体取决于该过程中使用的能源的类型(Xiao等,2010;Sævarsdottir等人,2021年)。由碳热过程产生的MG-SI的纯度约为98%和99%。电子级硅(杂质含量<1 ppb)和太阳级硅(杂质含量<1 ppm)用于各种应用,例如在光伏和电子产品中(Suzdaltsev,2022年)。用于从MG-SI生产高纯度硅的常规技术是西门子的工艺,它具有高能量消耗和低生产率(Chigondo,2018),或者使用流体化的床工艺(Arastoopour等,2022年)。另一种方法是Si在熔融盐中的电沉积,预计会产生高纯硅。如果所使用的阳极不耗时并且不产生CO 2,则与常规过程相比,碳足迹可以显着降低,如果用于电解的电力是可续签或核能的。已经证明,具有不同形态学的si膜可以电化学地沉积在不同的熔融盐中,例如氯化物,氟化物和氯化物 - 氟化物(Juzeliu Nas和Fray,2020年)。这些盐中的每一个都有优势和缺点;氯化物熔体是高度水溶性的,但沉积的胶片薄(<10 µm)。同时,沉积在浮力物中沉积的胶片是致密的,但是粘附在沉积物上的盐很难轻易去除。si可以通过将Si源/前体(例如SiO 2,Na 2 Sif 6,K 2 SIF 6和SICL 4)添加到熔融盐中来沉积。Si前体分解为Si(IV)电活性离子,该离子通过基于盐类型的一步或两步减少机制减少。
与其IRF值保持不变; RF LW为3.8 w m 2,比IRF LW高。因此,Hansen等人。(1981)发现,根据是否考虑了RF还是IRF,净强度为2.6%或4%的净强度(LW + SW)。CO 2 IRF SW在ERF框架中重新出现的观点,该框架采用TOA的视角(例如,图。Ramaswamy等人的14-6,2018)。 相比之下,Cess等人。 (1993)报告说,CO 2 IRF SW为负,约占IRF LW的6%(用于330 ppm的doubl)。 这种观点已经建立,尽管并非所有研究都发现了负面的CO 2 tropo-pause irf SW(Forster等,2001)。 明显的障碍是因为Cess等人。 (1993)定义在对流层面上的强迫; Hansen等。 (1981)选择TOA。 这仍然留下一个问题,即哪种观点最有价值,以及它们是否可以和解。 Myhre等。 (1998)还发现,RF LW的CO 2(0.11 w m 2)的CO 2为负IRF SW,从278 ppm增加了一倍。 然而,在这里很重要的是,额外的SW吸收温暖了平流层(与仅LW的情况相关)。 在RF框架中,Myhre等人。 (1998)计算出这种变暖导致对流层顶RF LW(0.05 W m 2);因此,由于SW强迫引起的净RF(0.06 W m 2)约为IRF SW的一半。 对于增加平流层H 2 O的浓度,Forster和Shine(2002)(另见Forster等,2001; Myhre等,2007,2009)发现了Tropapause irf SW,占RF LW的20%。 Etminan等。Ramaswamy等人的14-6,2018)。相比之下,Cess等人。(1993)报告说,CO 2 IRF SW为负,约占IRF LW的6%(用于330 ppm的doubl)。这种观点已经建立,尽管并非所有研究都发现了负面的CO 2 tropo-pause irf SW(Forster等,2001)。明显的障碍是因为Cess等人。(1993)定义在对流层面上的强迫; Hansen等。(1981)选择TOA。 这仍然留下一个问题,即哪种观点最有价值,以及它们是否可以和解。 Myhre等。 (1998)还发现,RF LW的CO 2(0.11 w m 2)的CO 2为负IRF SW,从278 ppm增加了一倍。 然而,在这里很重要的是,额外的SW吸收温暖了平流层(与仅LW的情况相关)。 在RF框架中,Myhre等人。 (1998)计算出这种变暖导致对流层顶RF LW(0.05 W m 2);因此,由于SW强迫引起的净RF(0.06 W m 2)约为IRF SW的一半。 对于增加平流层H 2 O的浓度,Forster和Shine(2002)(另见Forster等,2001; Myhre等,2007,2009)发现了Tropapause irf SW,占RF LW的20%。 Etminan等。(1981)选择TOA。这仍然留下一个问题,即哪种观点最有价值,以及它们是否可以和解。Myhre等。 (1998)还发现,RF LW的CO 2(0.11 w m 2)的CO 2为负IRF SW,从278 ppm增加了一倍。 然而,在这里很重要的是,额外的SW吸收温暖了平流层(与仅LW的情况相关)。 在RF框架中,Myhre等人。 (1998)计算出这种变暖导致对流层顶RF LW(0.05 W m 2);因此,由于SW强迫引起的净RF(0.06 W m 2)约为IRF SW的一半。 对于增加平流层H 2 O的浓度,Forster和Shine(2002)(另见Forster等,2001; Myhre等,2007,2009)发现了Tropapause irf SW,占RF LW的20%。 Etminan等。Myhre等。(1998)还发现,RF LW的CO 2(0.11 w m 2)的CO 2为负IRF SW,从278 ppm增加了一倍。然而,在这里很重要的是,额外的SW吸收温暖了平流层(与仅LW的情况相关)。在RF框架中,Myhre等人。(1998)计算出这种变暖导致对流层顶RF LW(0.05 W m 2);因此,由于SW强迫引起的净RF(0.06 W m 2)约为IRF SW的一半。对于增加平流层H 2 O的浓度,Forster和Shine(2002)(另见Forster等,2001; Myhre等,2007,2009)发现了Tropapause irf SW,占RF LW的20%。Etminan等。Etminan等。(2016)提出了甲烷的IRF SW计算; Tropopause IRF SW(750 - 1800 PPB扰动)为正,占总强度的6%;考虑平流层变暖的影响
土壤,持有约1500 pg的总碳(C)和136 pg的总氮(N),代表了这些元素最大的陆地储层(Nieder and Benbi,2008)。然而,它也是温室气体(GHG)排放的重要来源,每年贡献350多个PG CO 2等效物,从而显着影响全球变暖。多年来,大气n 2 O的浓度增加了20%以上,CH 4浓度几乎增加了两倍至1900 ppb,主要归因于微生物活性(Schaefer等,2016)。了解与温室气体的生产和减少同时的微生物机制至关重要。最近的发现,例如非典型一二氮还原酶(NOSZ II),Comammox以及新的过程,例如氧降解和CH 4的厌氧氧化,与硝酸盐,硝酸盐,熨斗和锰氧化物的还原,脑海中的脑囊性cons的作用相关的CH 4的氧化作用,该作用是piver的作用。和n,并突出了针对性策略减少温室气体排放并减轻全球变暖的途径。该研究主题包括九种文章,这些文章对影响温室气体发射的因素(尤其是N 2 O)以及微生物的潜在作用。硝化和硝化作用是产生N 2 O.肥料的施用,尤其是N-肥料,为这种有效的温室气体的排放提供了促进。因此,硝化抑制可能是减少N 2 O排放的潜在方法。在本研究主题中,Lei等人。Xie等。 比较了来自草原的n 2 o 的排放Xie等。比较了来自草原的n 2 o分析了来自48项研究的200多个数据集,发现硝化抑制剂的应用平均降低了总N 2 O排放量的60%,超过70%的土壤铵浓度增加,并降低了约50%的AOB丰度。发现强调了AOB在N 2 O排放中的重要作用,并且可以成为缓解n 2 O的更好指标和目标。
铅小于15.5 ppb?1 LC266 CDC 120 - RR - MENS 1/17/25 4:18 AM 140 <2 Yes 2 LC267 CDC 124 - RR - WOMENS 1/17/25 4:19 AM 160 <2 Yes 3 LC228 CDC 131 - SINK - HAND 1/17/25 4:22 AM 260 <2 Yes 4 LC308 CDC 131 - SINK - WASH 1/17/25 4:22 AM 270 <2是5 LC261 CDC 134-粉红色-DF 1/17/25 4:24 4:24 AM 96 <2是6 LC256 CDC 134-粉红色-1/17/25 4:25 AM 130 AM 130 AM 130 <2 YES 7 LC263 CDC 156 -136 -RED -RED -DF 1/258 AM258 AM 258 AM 258 AM CDC 156 - RED - SINK 1/17/25 4:29 AM 130 <2 Yes 9 LC257 CDC 157 - BLUE - SINK 1/17/25 4:32 AM 130 <2 Yes 10 LC264 CDC 172 - PURPLE - DF 1/17/25 4:35 AM 86 <2 Yes 11 LC259 CDC 172 - PURPLE- SINK 1/17/25 4:36 AM 130 <2 Yes 12 LC265 CDC 173 - RAINBOW - DF 1/17/25 4:38 AM 72 <2 Yes 13 LC260 CDC 173 - RAINBOW - SINK 1/17/25 4:39 AM 110 <2 Yes 14 LC270 HS 120 - RR - MENS - RIGHT 1/16/25 5:18 AM 200 <2 Yes 2/05/25 6:03 AM 180 <2 Yes 15 LC314 HS 122 - RR - WOMENS - RIGHT 1/16/25 5:45 AM 280 <2 Yes 2/05/25 6:46 AM 280 <2 Yes 16 LC272 HS 224 - RR - LEFT 1/16/25 5:13 AM 240 <2 Yes 17 LC273 HS 226 - RR - LEFT 1/16/25 5:14 AM 230 <2 Yes 18 LC248 LX 004 -RR-男士 - 左1/16/25 6:00 AM 150 <2是19 LC286 mm 003A -Sink 1/15/25 5:10 PM 370 <2 Yes
AICS 澳大利亚化学物质名录 atm 大气 CAS 化学文摘社(登记号) cm² 平方厘米 CO2 二氧化碳 COD 化学需氧量 摄氏度 (°C) 摄氏度 EPA(新西兰) 新西兰环境保护局 华氏度 (°F) 华氏度 g 克 g/cm³ 克/立方厘米 g/l 克/升 HSNO 有害物质和新生物体 IDLH 对生命和健康有立即危害 不混溶 液体之间不互溶。 inHg 英寸汞柱 inH2O 英寸水 K 开尔文 kg 千克 kg/m³ 千克/立方米 lb 磅 LC50 LC 代表致死浓度。LC50 是物质在空气中导致一组实验动物中 50%(一半)死亡的浓度。该物质在一定时间内被吸入,通常为 1 或 4 小时。LD50 LD 代表致死剂量。LD50 是一次性给予的某种物质的量,会导致一组实验动物中 50%(一半)死亡。ltr 或 L 升 m³ 立方米 mbar 毫巴 mg 毫克 mg/24H 毫克/24 小时 mg/kg 毫克/千克 mg/m³ 毫克/立方米 混合或可混合液体形成一个均匀的液相,无论存在的任一组分的量是多少。 mm 毫米 mmH2O 毫米水 mPa.s 毫帕每秒 N/A 不适用 NIOSH 国家职业安全与健康研究所 NOHSC 国家职业健康与安全委员会 OECD 经济合作与发展组织 Oz 盎司 PEL 容许接触限值 Pa 帕斯卡 ppb 十亿分之一 ppm 百万分之一 ppm/2h 每 2 小时百万分之一 ppm/6h 每 6 小时百万分之一 psi 磅/平方英寸 R 兰氏 RCP 倒数计算程序 STEL 短期接触限值 TLV 阈限值 tne 吨 TWA 时间加权平均值 ug/24H 每 24 小时微克 UN 联合国 wt 重量
执行总结伯里尔维尔镇正在伯里尔维尔高中安装人造草皮田。。该报告已准备好解决这些问题。基于迄今为止进行的评估,已经证明,人造草皮中非常有限数量的PFA的检测对使用人造草皮球场的人并不代表人类健康风险,并且不会对环境,地下水,地表水和含水剂构成风险。有关更多详细信息,请参阅本报告的第2.0节。在一个野外地毯草皮样品的浸出液中,检测到的一个PFA浓度远低于地下水监管筛查标准(检测到比每万亿个筛查标准的20个(PPT)低87倍,或者以1.15%的限制,将其结合在浸出液的情况下,以1.15%的筛查标准检测到。因此,基于地毯草皮浸出物中该PFA的存在,不会对环境产生不利影响。美国环境保护局(USEPA)和罗德岛筛查标准用于此评估。有关更多详细信息,请参阅第2.0节和表3。预计在使用时会与人造草皮进行物理接触。一些人造草皮样品包含有限数量的PFA的低水平痕量浓度(据报道为“ J”估计值)。与基于健康的筛查水平相比,浓度是低于目标基准水平的数量级,因此表明暴露于这些化合物的风险没有明显的风险。全氟辛酸(PFOA)和全氟辛烷磺酸(PFO)是最关注的PFA的两个。PFOA。一个样本中检测到的PFO浓度低于Rhode Island的背景值,远低于人类健康风险筛查标准(检测到47倍低于每十亿分之6.3 [PPB]风险筛查标准,或以2.14%的风险筛查标准检测到)。所有其他PFA都大大低于筛选标准。Rhode Island筛查标准没有用于此评估;作为替代品,使用了USEPA和新英格兰各州的最低筛查标准。有关更多详细信息,请参阅第2.0节和表2。测试了两个橡胶填充样品的30个PFA,在任何样品中均未检测到PFA。有关更多详细信息,请参阅第2节。
硝化化是全局n周期研究最少的过程,这主要是由于区分n 2对高大气n 2背景所需的少量土壤通量所需的敏感性。我们旨在通过优化使用15 n - no 3示踪剂的数量和使用人工大气(包含5%n 2,20%O 2,75%o 2,75%He和0.11 ppm n n n 2 o),以提高15 n气通量方法的敏感性,以测量原位反硝化速率。我们首先进行了剂量反应实验室研究,以评估添加硝酸盐示踪剂的刺激效应。随后,我们开发了两种新颖的方法来测量原位反硝化速率,使用改良的静态腔室或塑料衬里内部完整的土壤核心。在这两种情况下,整个顶部空间都被孵化前的人造气氛所取代。此外,我们比较了15 N气通量方法的两种计算模型(“ Mulvaney&Boast”和“ Arah”模型)以及基于N 2或N 2 O ISO TOPOLOGUE分布数据的土壤硝化池的15 N富集。结果表明,在我们的情况下,将环境硝酸盐的量增加一倍并不会导致对非硝化活性的显着刺激。但是,过度修改了硝酸盐(例如环境水平的20倍)通过刺激一氧化二氮的发射来增加反硝化产物比。在高分辨率仪器下,我们的N 2检测极限为160 ppb,比原始方法好5倍。我们的两种新型现场技术成功地测量了原位硝化率,但是,由于较高的N 2通量检测率(最高90%),较高的吞吐量(一次核心最多24个核心)和改善空间分辨率,因此优选衬里方法。Mulvaney&Boast模型的性能优于Arah One,并始终产生更高的通量(最大值为17%),尤其是对于低15 n n富集的土壤硝化池和短时间孵育时间。用n 2或n 2 o数据计算出的15 n含量在统计上有所不同,但差异幅度很小(最大值为4.6%)。测量原位否定的三化必须量化现实的通量,此处介绍的衬里方法是廉价,可重复和高分辨率的候选者。为了提高灵敏度,我们建议使用Mulvaney&Boast进行N 2 O排放的方法,并将结果与29 N 2数据(仅)结合使用15 n N富集来确定N 2排放。
背景 2010 年 6 月 2 日,美国环境保护署 (US EPA) 公布了二氧化硫 (SO2) 国家环境空气质量标准 (NAAQS) 修订版。美国环保署以 75 ppb 的新短期 1 小时标准取代了 24 小时和年度标准。新的 1 小时 SO2 标准于 2010 年 6 月 22 日发布 (75 FR 35520),并于 2010 年 8 月 23 日生效。该标准以 1 小时日最大浓度年第 99 分位数的 3 年平均值为基础。2013 年 8 月 15 日,美国环保署根据监测到的违规区域,公布了 (78 FR 47191) 全国范围内 1 小时 SO2 标准初始第一轮 SO2 不达标区域划定2015 年 3 月 2 日,美国加州北区地方法院接受了美国环保局与塞拉俱乐部和自然资源保护委员会之间达成的一项协议,作为一项可执行命令,以解决有关完成指定截止日期的诉讼。如美国环保局 2015 年 3 月 20 日发布的备忘录《2010 年主要二氧化硫国家环境空气质量标准区域指定更新指南》中所述,法院命令指示美国环保局分三步完成剩余的指定:第二轮于 2016 年 7 月 2 日前完成;第三轮指定截止日期为 2017 年 12 月 31 日,第四轮指定截止日期为 2020 年 12 月 31 日。作为第二轮指定的一部分,美国环保署确定了新监测到的违反标准区域,或包含 2012 年排放量超过 16,000 吨 SO2 或排放量超过 2,600 吨 SO2 且排放率至少为 0.45 磅 SO2/MMBtu 的固定污染源的区域。美国环保署认定俄亥俄州有两家设施满足一个或多个排放阈值:詹姆斯 M. 加文将军电厂和 WH Zimmer 发电站。2016 年 7 月 12 日,美国环保署公布了 (81 FR 45039) 这些源区的第二轮最终指定名单。俄亥俄州于 2017 年 1 月 13 日提交了第三轮指定的建议。美国环保署于 2018 年 1 月 9 日最终确定了这些区域的指定(83 FR 1098)。第三轮和第四轮指定根据美国环保署 2015 年 8 月 21 日针对 2010 年 1 小时二氧化硫 (SO 2 ) 主要国家环境空气质量标准 (NAAQS) 的数据要求规则;最终规则 [80 FR 51052](以下简称 DRR)制定,该规则要求通过建模或监测对实际排放量超过 2,000 吨/年 (TPY) 的 SO 2 源进行表征。DRR 还建立了持续的数据审查要求,包括对于以实际 SO 2 排放量建模作为无法分类/达标指定基础的区域,每年审查排放数据并提交报告,建议是否需要由于排放量增加而更新建模。年度排放审查应于每年 7 月 1 日前提交给美国环保署第 5 区,从指定生效日期后的日历年开始。本文件是俄亥俄州 2022 年年度排放审查和是否需要更新模型的建议。
在过去的几十年中,可再生能源技术和存储已经成熟,并增加了它们进入全球能源产品组合的渗透。但是,在服役20年之后,较早的可再生技术(例如风能和太阳能)即将结束其服务寿命。结果是诸如光伏(PV)细胞和风力涡轮机叶片等组件的潜在间隔,而没有清晰的回收或再利用路径。根据国际可再生能源局的说法,到2050年,将产生7800万吨的PV面板废物。随着第一代涡轮机的生命尽头,数千个15–20米长的叶片等待焚化或回收/再利用。用于储能的电池包含关键元素,例如钴和锂不容易恢复。即使可以回收或重复使用许多组件,该过程通常需要昂贵且复杂的热,化学和机械过程,并且可以阻止产业,从而促使资金以及重新使用或回收的努力。因此,这些“绿色”技术在其一生中,事实证明,环保的不太友好。为了消除绿色技术中废物的造成,越来越多的努力拥护循环经济,在这种经济中,线性制造方法被一种系统所取代的系统,在该系统中,将产品重新使用,重新使用或再生的产品,从而关闭了循环。但是,要成功达到此终点,必须仔细考虑循环的开始。DFR的领域已经成熟,可以从材料社区的贡献中贡献。Andrea AmbrosiniAndrea Ambrosini如Shahbazi和Jönbrink所述:“循环经济业务模型和关闭循环只有当产品和服务是为循环设计而设计的(例如,可以轻松拆卸并隔离到不同的组件和材料中,以促进故障组件的交换以促进不同方式的寿命,以促进不同方式的寿命。换句话说,我们必须重新考虑可再生能源和存储的设计,以从一开始就结合了组件的简便回收或重复使用(即用于回收[DFR]的设计)。最小化或更换危险材料需要开发和综合新的,更良性的材料,例如,PV面板的设计已过时,该面板已过时使用铅,锑和荧光聚合物。铅,即使在低PPB浓度下,也是一种有效的神经毒素。从20%高效的PB钙钛矿太阳能电池中获得的电力可以含有数十吨的可溶性PB,与在等待回收利用的PB-ACID电池中使用的吨吨相比,这与使用的吨相比。 可以更容易拆卸和重新加工的零件制造,需要开发互补的材料,可以轻松地重复使用或回收。 这一想法用等式的这一部分中报道的“所有固态电池”概念举例说明。 电池设计为易于拆卸,可将实心电解质和阴极分开并重新处理以制造新鲜电池,而无需重新合成步骤。 采用DFR和一般的循环经济将需要政治和财务意志力才能成为现实。可以含有数十吨的可溶性PB,与在等待回收利用的PB-ACID电池中使用的吨吨相比,这与使用的吨相比。可以更容易拆卸和重新加工的零件制造,需要开发互补的材料,可以轻松地重复使用或回收。这一想法用等式的这一部分中报道的“所有固态电池”概念举例说明。电池设计为易于拆卸,可将实心电解质和阴极分开并重新处理以制造新鲜电池,而无需重新合成步骤。采用DFR和一般的循环经济将需要政治和财务意志力才能成为现实。材料社区可以发挥关键作用,使DFR通过识别,综合和开发新材料和过程在经济上更具吸引力,这些新材料和过程可以以有意义的方式关闭循环。
