对蛋白质,亚基或其他生物分子之间纳米距离的光学研究一直是数十年来Förster共振能量转移(FRET)显微镜的独家特权。在这项工作中,我们表明Minflux荧光纳米镜检查可直接,线性和吻线精度直接,线性,线性,线性,线性,线性,线性,线性直接,直接,直接,线性地降低到1 angstrom。我们的方法通过量化多肽和蛋白质中的1至10纳米距离来验证。此外,我们可视化了免疫球蛋白亚基的方向,在人类细胞中应用了该方法,并揭示了组氨酸激酶PAS PAS结构域二聚体的特定构型。我们的结果打开了通过直接位置测量在骨内分子尺度上检查接近和相互作用的大门。o
尽管它作为生物标志物具有很大的价值,但提取和净化的CFDNA传统上还是由于其在血液中的低浓度和高水平的破碎而提出了挑战。Revvity的Chemagic™技术提供了一种强大的解决方案来应对这些挑战。利用M-PVA磁珠技术2从大等离子体体积中提取CfDNA,DNA提取和纯化平台设计用于最大程度地提高产量和纯度。与先进的量化技术(例如液滴数字™PCR(DDPCR))结合使用,该工作流在早期癌症生物标志物研究中提供了无与伦比的精度和可重复性。
*相应的作者。Quoqing Zhang。国家基因组学数据中心和生物医学大数据中心,中国科学院计算生物学主要实验室,上海营养与健康研究所,中国科学院,中国科学院,中国科学院,Yueyang Road,320 Yueyang Road,Xuhui区,XUHUI区,XUHUI区,200031年,中国Xuhui区。电子邮件:gqzhang@sinh.ac.cn; Yunchao Ling。 国家基因组学数据中心和生物医学大数据中心,中国科学院计算生物学主要实验室,上海营养与健康研究所,中国科学院,中国科学院,中国科学院,Yueyang Road,320 Yueyang Road,Xuhui区,XUHUI区,XUHUI区,200031年,中国Xuhui区。 电子邮件:lingyunchao@sinh.ac.cn; ping xu。 上海生命科学信息中心,上海营养与健康研究所,中国科学院,中国科学院,中国科学院,XUHUI区320 Yueyang Road,Shanghai,200031,中国。 电子邮件:xuping@sinh.ac.cn。 ‡同等贡献。电子邮件:gqzhang@sinh.ac.cn; Yunchao Ling。国家基因组学数据中心和生物医学大数据中心,中国科学院计算生物学主要实验室,上海营养与健康研究所,中国科学院,中国科学院,中国科学院,Yueyang Road,320 Yueyang Road,Xuhui区,XUHUI区,XUHUI区,200031年,中国Xuhui区。电子邮件:lingyunchao@sinh.ac.cn; ping xu。 上海生命科学信息中心,上海营养与健康研究所,中国科学院,中国科学院,中国科学院,XUHUI区320 Yueyang Road,Shanghai,200031,中国。 电子邮件:xuping@sinh.ac.cn。 ‡同等贡献。电子邮件:lingyunchao@sinh.ac.cn; ping xu。上海生命科学信息中心,上海营养与健康研究所,中国科学院,中国科学院,中国科学院,XUHUI区320 Yueyang Road,Shanghai,200031,中国。电子邮件:xuping@sinh.ac.cn。 ‡同等贡献。电子邮件:xuping@sinh.ac.cn。‡同等贡献。
准确表征人类疾病的能力对于生物医学研究至关重要。在这一努力中,动物模型已被证明是解剖复杂生物过程和评估治疗方法的极佳工具。1 从克罗顿的阿尔克迈翁对犬类智力的开创性研究到当前热衷于研制 COVID-19 疫苗,动物模型在大大改善人类和动物健康的创新中发挥了重要作用。2 21 世纪最先进的科学技术现实的偶然介入,即人工智能 (AI)、机器学习 (ML)、深度学习 (DL)、器官芯片系统 (OOC)、3D 和 4D 生物打印、组学技术等,为我们提供了利用动物模型进行医学研究的新范例。3
摘要 人工智能与制药领域的交叉代表着一场根本性的变革,通过提高治疗方式的精确度,为加速药物设计和开发时间表提供了新的可能性。我们专注于这两个领域的融合,从战略角度出发,通过克服传统配方方法引发的挑战,挖掘出有潜力的精准候选药物。我们的目标是彻底分析人工智能的各种应用,从其对目标识别的重大贡献到其对临床试验优化的影响的认证。作为一本智力指南,本系统评价引导读者探索人工智能与制药科学合作的未知领域。通过从各种研究和方法中获取所需的信息,我们的系统评价不仅致力于对人工智能的影响进行回顾性分析,而且还致力于提供关于其变革可能性的前瞻性视角。 关键词:人工智能、药物发现、机器学习。国际药品质量保证杂志 (2024); DOI:10.25258/ijpqa.15.3.08 如何引用本文:Sahoo DK、Sarangi RR、Nayak SK、Rajeshwar V、Sayeed M。发现新视野:人工智能在药物发现和开发中的应用系统评价。国际药品质量保证杂志。2024;15(3):1151-1157。支持来源:无。利益冲突:无
单细胞测序 (SCS) 技术是一种在单细胞水平上分析遗传物质的方法,它为了解细胞异质性提供了广泛的见解。它拓宽了肿瘤学研究的范围,使人们能够探索不同细胞类型组织内的功能和遗传多样性。此外,SCS 还促进了转移追踪和肿瘤微环境分析等复杂生物过程的研究。然而,由于临床可及性不足和应用成本高,SCS 方法的实施受到阻碍。本综述通过关注癌症研究和精准医疗领域,研究了 SCS 技术的发展,分析了各种商业平台的吞吐量、可及性和成本趋势。尽管第三代测序平台取得了重大进展,为单细胞遗传信息测序提供了高精度、多功能性和吞吐量,但这些方法面临着高错误率、资金不足和数据分析复杂等挑战。此外,我们已经确定,过去十年的进步已经实现了个性化医疗和细胞异质性的深入分析,彻底改变了医学、生物技术和生物研究等领域。我们预计我们的分析将通过以下方式在医疗保健领域取得广泛进步:
简介:神经系统疾病是指影响大脑、脊髓和人体其他神经(神经元)的疾病。涉及中枢神经系统 (CNS) 和周围神经系统 (PNS) 的脑部疾病以及脑癌是一些最常见、最致命且治疗不足的疾病。每年因 CNS 相关问题导致的 680 万死亡病例中,超过 100 万人是由神经退行性疾病引起的,包括胶质母细胞瘤 (GBM)、帕金森病 (PD) 和阿尔茨海默病 (AD)。已经开发了几种药物来解决治疗 CNS 疾病时与毒性、特异性和递送相关的问题。然而,治疗药物很难穿过血脑屏障 (BBB) 等屏障,这会降低治疗效果。此外,一些治疗剂的水溶性差、半衰期短、生物利用度低(需要频繁高剂量给药)以及水溶性差(可能导致多种严重副作用,如运动障碍、口腔炎、睡眠障碍、焦虑和抑郁)限制了它们在治疗中枢神经系统疾病中的应用。这些问题凸显了精准药物输送的必要性,例如使用聚多巴胺纳米颗粒 (PN) 作为模型,由于中枢神经系统中存在聚多巴胺受体,可以在细胞水平上改变或操纵各种过程,以实现所需的属性。这些纳米颗粒是药物输送和其他方法的有效替代品,因为它们具有纳米尺寸,可以穿过血脑屏障。鉴于它们的生物相容性、高稳定性、表面改性和可调节的靶向功效,它们可用于运输生物活性化合物,尤其是穿过血脑屏障。它们有可能成为一种向中枢神经系统输送药物的有吸引力的方法。人工智能 (AI) 已成为精准医疗发展的关键技术。这是因为 AI 可以分析和解释生物数据并实现智能活动的自动化。尽管 AI 已用于药物输送,但几乎没有证据表明
光遗传学工具箱中的一种众所周知的现象是,所有光门控离子通道(包括红移的通道旋转蛋白(CHRS))都被蓝光激活,而蓝移Chrs对更长的波长的响应最小。在这里,我们利用此功能创建了一个系统,该系统允许具有红光脉冲的神经元高频激活,同时允许通过Blue Light的毫秒精度抑制动作电位。我们通过将超快速的红色CHR与适当匹配的动力学匹配的蓝色光敏感阴离子通道配对来实现这一目标。这需要筛选几个阴离子选择性CHRS,然后进行基于模型的诱变策略,以优化其动力学和光谱。海马中的切片电生理学以及对颤音运动的行为检查表明,蓝光的激发最少。允许对具有红光的神经元进行高频光学遗传激发,而蓝光抑制动作电位在光脉冲的持续时间内被罚款。
肿瘤免疫疗法 (IO) 已显著改善多种癌症的治疗效果,从而导致其在各种治疗中的应用日益广泛。此类治疗包括免疫检查点抑制剂、CAR-T 细胞、免疫细胞因子以及溶瘤病毒,所有这些治疗都从本质上利用患者自身的免疫系统来更有效地靶向恶性肿瘤。然而,IO 通常会导致非典型反应模式,而这些模式无法通过传统的基于大小的成像反应标准(如 RECIST(实体肿瘤反应评估标准)[1])有效捕捉。这些现象总体上使治疗效果的评估变得复杂,可能包括假进展(肿瘤大小最初增加,随后最终出现反应)、混合反应(一些病变缩小而另一些病变生长)、超进展(治疗后肿瘤快速生长)和远隔效应(一个病变的局部治疗导致远处转移消退)。新的响应和进展模式强调需要更加量身定制
探索体内模型的替代方案,本研究验证了精确切割肺切片(PCLS)是可行的肺癌研究的可行的离体平台。我们确定了PCLS的长期活力和结构保存,对于准确的药物反应研究至关重要。使用紫杉醇作为基准药物和一种与免疫疗法结合使用的具有治疗良好的银纳米颗粒,我们对其对PCLS对PCLS的治疗作用进行了开创性的比较分析。结果表明,PCL在体内反应中紧密模仿,表明肿瘤生长抑制作用中的药物疗效可比。这种直接比较不仅证实了PCL在模拟现实结果中的实用性,而且还强调了其在减少动物测试中的潜力。通过为肺癌研究提供可靠,道德和有效的替代方案,PCL可以显着增强临床前研究和药物的开发,这标志着迈向更人性化和代表性的科学研究的关键一步。