对离子在半导体中产生的电离径迹的产生和传输进行 TCAD 模拟与可靠性以及辐射探测器的设计息息相关。具体而言,可靠性应用侧重于模拟在测试半导体元件是否易受软错误(逻辑器件、存储器,例如 [1] )和单粒子烧毁(功率器件,例如 [2] )影响时发生的瞬态现象。主要的 TCAD 工具已经包含模型和程序(例如 [3] ),但它们存在一些实际限制,例如仅限于单一类型的离子、有效能量范围的限制以及仅适用于硅的校准。此外,现有模型在数值上比较僵化,不易针对其他类型的离子、半导体和能量范围进行校准。本文提出了一个基于物理导向的 Crystal-Ball 函数 [4] 的半导体中低能离子沉积电荷的统一模型。特别关注能量范围分别为 0 – 10 MeV 和 0 – 160 MeV 的 α 粒子和质子。与常用模型相比,这种选择具有几个优势。特别是,α 粒子和质子使用相同的建模函数。此外,与现有解决方案相比,所提出的模型使用的校准参数更少,数值条件良好,并且其校准参数更透明,因为它们与可测量的物理量相关。最后,所提出的模型可以轻松扩展到不同的半导体和离子类型。
1 I.物理研究所和Jara-fame,RWTH Aachen University,52056 Aachen,德国2物理学系中东技术大学(METU),06800 ANKARA,Türkiye3 Universit´e Grenoble Alpes Alpes Alpes Alpes,Universit´e Savoie Mont Blanc,Cnrs,Cnrs,cnrs,cnr beih,Lapp-in2puro,74000 Annecy,74000 Annecy,74000 Annecy(北京,100191,中国5电气工程研究所(IEE),中国科学院,北京,北京,100190,中国6,中国科学学院(IHEP),中国科学院,北京学院,北京,100049,100049,100049,中国中国北卡罗来纳大学(UCAS)(UCAS),北比里吉岛401,北京意大利博洛尼亚9大学,40126年意大利博洛尼亚大学10马萨诸塞州理工学院(MIT),马萨诸塞州剑桥市02139,美国11号,美国11号太空科学中心,马里兰州马里兰州大学公园,马里兰州大学公园,马里兰州20742,美国12742,美国12伊普斯特,美国马里兰州501号,美国501.20742意大利佛罗伦萨,14欧洲核研究组织(CERN),1211 Geneva 23,瑞士15 DPNC,DPNC,Universit´e de Geneeve,1211 gen`'Eve 4,瑞士16瑞士16 Universit´e Grenoble Alpes,Cnrs,CNRS,CNRS,Grenoble INP,Grenoble INP,LPSC-IN2P3,LPSC-IN2p3,38000 Grenoble,Franceble,Franceble,france,
通过电离辐射引起的生物损害在许多应用领域中起主要作用,例如放射疗法和微测定法。geant4-DNA蒙特卡洛轨道结构代码具有模拟辐射通过液态水的通过,其中包含带来早期DNA损伤的物理,物理化学和化学过程。对于质子弹丸,当前模型达到了100 MeV的事件能量。为了涵盖质子放射疗法所涉及的整个能量状态,这项工作提出了一种新模型,将质子电离和液体水的激发延伸至300 meV。使用相对论的平面波近似(RPWBA)对五个电离壳的离子壳和五个激发液水的离子水平进行计算。实施通过官方版本的宣传和范围示例验证,与ICRU90报告中发表的参考证据获得了1%的协议。
摘要。在这项工作中,通过拉曼光谱法研究了质子照射和铂杂质对硅样品晶体结构的影响。已经确定,具有铂的Si的单晶掺杂会导致小变化和拉曼光谱中新振动的出现。在521 cm – 1处主硅峰的强度降低了1.6倍,而其FWHM实际上没有变化,约为4.0 cm – 1。这种峰强度的降低可能是由于PT扩散而导致硅晶格结构中键的键和破坏。表明,在Si 光谱中60–280 cm1范围内的新振动的出现与元素PT的存在和PTSI的形成有关。已经发现,具有600 keV质子的Si 样品的照射会导致拉曼光谱发生变化,而PT和/或PTSI的峰消失了。
在耦合微观聚结模型的输运模型中,研究了√ s NN = 2 . 4 GeV时20-30% Au+Au碰撞中心性中质子和氘的有向和椭圆流及其标度特性。研究发现,用同位旋和动量相关的核平均场(不可压缩率K 0 = 230 MeV)模拟的流动及其标度特性与HADES数据有很好的拟合度,而常用的动量无关的核平均场(不可压缩率K 0 = 380 MeV)模拟的流动及其标度特性只能部分拟合HADES数据。此外,通过检查√ s NN = 2时0-10% Au+Au碰撞中心性中质子和氘的快度分布,发现质子和氘的快度分布与HADES数据有很好的拟合度。 4 GeV,我们发现,使用动量独立的核平均场模拟低估了氘的快度分布,而高估了质子的快度分布。相比之下,使用同位旋和动量相关的核平均场模拟的质子和氘的快度分布与 HADES 数据高度一致。我们的发现意味着,核平均场的动量依赖性是理解核物质特性和成功解释 HADES 数据的一个不可避免的特征。
在这些项目中,加速器都是“单一技术”——全部基于超导。这些加速器的制造耗费了数十亿美元的资源。与传统方案不同的“暖”LA(用于 ADS)的设计从未在任何地方讨论过。据作者称,最后一次对这个问题的认真讨论是在 EPAC-96。1 现代科学文献中包含一个指导性声明,该声明在全球加速器技术开发者界广为流传:“在“暖”版本的 LA 中,效率低,小孔径(加速器通道直径)在束流损失方面是一个问题,而且束流损失不是局部的”。正是这种断言迫使大部分 LA 创造者开发超导(SP/SC)加速器复合体。结果,自 20 世纪 90 年代初以来,关于在室温(~300 K)下在 LA 结构上进行的超大功率线性加速器的开发的严肃分析和出版物几乎消失了。这种错误观点被阿列克谢·博格莫洛夫教授的理论工作和他所创立的逆波质子加速器的成功运行彻底驳斥了。2