在这些项目中,加速器都是“单一技术”——全部基于超导。这些加速器的制造耗费了数十亿美元的资源。与传统方案不同的“暖”LA(用于 ADS)的设计从未在任何地方讨论过。据作者称,最后一次对这个问题的认真讨论是在 EPAC-96。1 现代科学文献中包含一个指导性声明,该声明在全球加速器技术开发者界广为流传:“在“暖”版本的 LA 中,效率低,小孔径(加速器通道直径)在束流损失方面是一个问题,而且束流损失不是局部的”。正是这种断言迫使大部分 LA 创造者开发超导(SP/SC)加速器复合体。结果,自 20 世纪 90 年代初以来,关于在室温(~300 K)下在 LA 结构上进行的超大功率线性加速器的开发的严肃分析和出版物几乎消失了。这种错误观点被阿列克谢·博格莫洛夫教授的理论工作和他所创立的逆波质子加速器的成功运行彻底驳斥了。2
摘要。在这项工作中,通过拉曼光谱法研究了质子照射和铂杂质对硅样品晶体结构的影响。已经确定,具有铂的Si的单晶掺杂会导致小变化和拉曼光谱中新振动的出现。在521 cm – 1处主硅峰的强度降低了1.6倍,而其FWHM实际上没有变化,约为4.0 cm – 1。这种峰强度的降低可能是由于PT扩散而导致硅晶格结构中键的键和破坏。表明,在Si 光谱中60–280 cm1范围内的新振动的出现与元素PT的存在和PTSI的形成有关。已经发现,具有600 keV质子的Si 样品的照射会导致拉曼光谱发生变化,而PT和/或PTSI的峰消失了。
对离子在半导体中产生的电离径迹的产生和传输进行 TCAD 模拟与可靠性以及辐射探测器的设计息息相关。具体而言,可靠性应用侧重于模拟在测试半导体元件是否易受软错误(逻辑器件、存储器,例如 [1] )和单粒子烧毁(功率器件,例如 [2] )影响时发生的瞬态现象。主要的 TCAD 工具已经包含模型和程序(例如 [3] ),但它们存在一些实际限制,例如仅限于单一类型的离子、有效能量范围的限制以及仅适用于硅的校准。此外,现有模型在数值上比较僵化,不易针对其他类型的离子、半导体和能量范围进行校准。本文提出了一个基于物理导向的 Crystal-Ball 函数 [4] 的半导体中低能离子沉积电荷的统一模型。特别关注能量范围分别为 0 – 10 MeV 和 0 – 160 MeV 的 α 粒子和质子。与常用模型相比,这种选择具有几个优势。特别是,α 粒子和质子使用相同的建模函数。此外,与现有解决方案相比,所提出的模型使用的校准参数更少,数值条件良好,并且其校准参数更透明,因为它们与可测量的物理量相关。最后,所提出的模型可以轻松扩展到不同的半导体和离子类型。
在耦合微观聚结模型的输运模型中,研究了√ s NN = 2 . 4 GeV时20-30% Au+Au碰撞中心性中质子和氘的有向和椭圆流及其标度特性。研究发现,用同位旋和动量相关的核平均场(不可压缩率K 0 = 230 MeV)模拟的流动及其标度特性与HADES数据有很好的拟合度,而常用的动量无关的核平均场(不可压缩率K 0 = 380 MeV)模拟的流动及其标度特性只能部分拟合HADES数据。此外,通过检查√ s NN = 2时0-10% Au+Au碰撞中心性中质子和氘的快度分布,发现质子和氘的快度分布与HADES数据有很好的拟合度。 4 GeV,我们发现,使用动量独立的核平均场模拟低估了氘的快度分布,而高估了质子的快度分布。相比之下,使用同位旋和动量相关的核平均场模拟的质子和氘的快度分布与 HADES 数据高度一致。我们的发现意味着,核平均场的动量依赖性是理解核物质特性和成功解释 HADES 数据的一个不可避免的特征。
通过电离辐射引起的生物损害在许多应用领域中起主要作用,例如放射疗法和微测定法。geant4-DNA蒙特卡洛轨道结构代码具有模拟辐射通过液态水的通过,其中包含带来早期DNA损伤的物理,物理化学和化学过程。对于质子弹丸,当前模型达到了100 MeV的事件能量。为了涵盖质子放射疗法所涉及的整个能量状态,这项工作提出了一种新模型,将质子电离和液体水的激发延伸至300 meV。使用相对论的平面波近似(RPWBA)对五个电离壳的离子壳和五个激发液水的离子水平进行计算。实施通过官方版本的宣传和范围示例验证,与ICRU90报告中发表的参考证据获得了1%的协议。
• Solar radiation (ultraviolet (UV), x-rays) • Charged particle radiation (electrons, protons) • Cosmic rays (energetic nuclei) • Temperature extremes & thermal cycling • Micrometeoroids & orbital debris (space particles) • Atomic oxygen (AO) (reactive oxygen atoms) • Planetary dust and wind • Reactive atmospheres
石墨烯是一块薄薄的碳原子,类似于金属,因为它的电子在纸板的平面上自由移动,形成密集的云,通常阻止其他颗粒和离子穿过它。但是,电子场可以使质子从上到下渗透薄片,从而将石墨烯变成一种筛子1。某些质子与云中的电子结合,形成缺陷,而缺陷又在剩下的电子流过纸张时散射其剩余的电子。结果类似于不受监管的交通交集:电子在一个方向上移动的电子与质子来自另一个。第619页,Tong等人。2报告一种驯服这些质子和电子产生两个独立电流的方法。非常不可渗透是石墨烯的电子云,即使是最小的原子,氢也可能需要数十亿年的时间才能通过纸。从氢叶中去除孤独的质子,其质子甚至更小,并且具有电荷。电场可以将质子通过聚合物或电解质驱动到相邻的石墨烯薄片中,从而使石墨烯成为易于用作氢燃料电池过滤器的杂物材料。这些设备通过将氢原子拆分为质子和电子来起作用:元素会产生电流,然后与质子和氧气重组以形成水作为废物。石墨烯和这些漫游质子之间的相互作用也可用于计算。以及渗透石墨烯,质子可以与其电子结合。切换的能力,尽管原始石墨烯具有出色的电导率(比金属的电导率更好,但如果其电子中的足够多的电子结合到传入的质子,材料就会变成电绝缘体。,但是可以通过使用电极(称为栅极)施加将电场泵入石墨烯的电场来恢复其电导率。
摘要:缺乏针对DNA对带电颗粒辐射的电子激发反应的分子级别的理解,例如高能质子,仍然是推进质子和其他离子束癌疗法的基本科学瓶颈。尤其是,不同类型的DNA损伤对高能质子的依赖性代表着重要的知识空隙。在这里,我们使用大量平行的超级计算机采用第一原理实时依赖时间依赖性密度函数理论模拟,以揭示从高能质子到水中DNA的能量传递的量子力学细节。计算表明,质子在DNA糖 - 磷酸侧链上的沉积能量明显多于核仁酶,并且预期在DNA侧链上的能量转移大于水。由于这种电子停止过程,在DNA侧链上产生了高能孔,作为氧化损伤的来源。
物质的结构和特性,每个原子具有一个带电的子结构,该子结构由核,该核由质子和中子制成,被电子包围。(HS.PS1A.A)原子是化学元件的基本单位。原子由亚原子颗粒制成:质子,中子和电子。原子具有核。原子的核是由带正电的质子和中子的,没有净电荷。带正电荷的核被较小电荷的电子包围。周期表通过原子核中质子的数量水平订购要素,并将具有相似化学特性的质子列入列中。该表的重复模式反映了外电子状态的模式。(HS.PS1A.B)最外面能级的电子称为价电子。元素的周期表是原子数或原子中质子数量的化学元件的排列。元素周期表用于预测元素行为模式。元素周期表的组排列反映了原子最外部能级中电子的模式,因此,每个组中元素的化学特性。周期表上每个元素列出的原子质量对应于该元素不同同位素的相对丰度。