摘要 光学设计和电子电路方面的最新进展使得近端传感器从被动式过渡到主动式。主动传感器不依赖自然光的反射,而是测量来自作物的调制光的反射,因此它们可以在所有光照条件下工作。这项研究比较了主动和被动冠层传感器在预测梅洛葡萄园 25-32 个随机选择位置的生物量产量方面的潜力。这两种传感器都提供了从转色期冠层天底视图估算的归一化植被指数 (NDVI),这可以很好地预测修剪重量。虽然被动传感器的红色 NDVI 更多地解释了生物量的变化(R 2 = 0.82),但它与修剪重量的关系是非线性的,最好用二次回归来描述(NDVI = 0.55 - 0.50 wt - 0.21 wt 2)。琥珀色 NDVI-生物量关系理论上的线性度更高,但在高生物量条件下无法验证。叶片中稳定同位素含量(13 C 和 15 N)的线性相关性提供了证据,表明冠层反射率可以检测到由于缺水和肥料氮吸收有限而导致的植物压力。因此,这些移动传感器提供的冠层反射率数据可用于改善葡萄园的特定地点管理实践。
摘要 - 本文报告了紧凑的神经网络拓扑设计的主要最新算法促进器,同时依靠基本的数值实验。嵌入传感器智能执行推理任务通常需要适当定义硬件限制下专门针对特定目的的神经网络体系结构。硬件设计约束称为功耗,硅表面,延迟和最大时钟频率上限可用资源,即记忆容量和算法复杂性。我们建议将算法启用器分类为4种类型,这些算法促进器会迫使硬件约束,同时保持精确度尽可能高。首先,降低尺寸(DR)用于减少预定的硬件编码模式,以减少内存需求。其次,使用归一化(QN)的低精度量化既可以简化硬件组件,又可以限制整体数据存储。第三,连通性修剪(CP)涉及对过度拟合的改进,同时限制了不必要的计算。最后,在提前通过的推论期间,可以执行拓扑零件的动态选择性执行(DSE)以限制整个拓扑的激活,从而减少整体功耗。索引术语 - 神经网络,压缩感应,随机修剪,量化神经网络,动态神经网络,硬件 - 算法共同设计。
最小最大算法 Alpha-Beta 剪枝 人工智能中的最小最大算法 最小最大算法是一种递归或回溯算法,用于决策和博弈论。它为玩家提供最佳走法,假设对手也发挥最佳。最小最大算法使用递归来搜索游戏树。 最小最大算法主要用于人工智能中的游戏,如国际象棋、跳棋、井字游戏、围棋和各种双人游戏。该算法计算当前状态的最小最大决策。在这个算法中,两个玩家玩游戏,一个称为 MAX,另一个称为 MIN。两个玩家都进行战斗,因为对手玩家获得最小利益,而他们获得最大利益。游戏的两个玩家都是对方的对手,其中 MAX 将选择最大值,而 MIN 将选择最小值。最小最大算法执行深度优先搜索算法来探索完整的游戏树。极小最大算法一直进行到树的终端节点,然后以递归的方式回溯树。 极小最大算法的工作原理 可以用一个例子轻松描述极小最大算法的工作原理。下面我们举一个代表双人游戏的游戏树的例子。在这个例子中,有两个玩家,一个叫做最大化者,另一个叫做最小化者。最大化者将尝试获得最高可能的分数,而最小化者将尝试获得最低可能的分数。该算法应用 DFS,因此在这个游戏树中,我们必须一直穿过叶子才能到达终端节点。在终端节点,给出了终端值,因此我们将比较这些值并回溯树,直到初始状态发生。 Alpha-beta 剪枝 Alpha-beta 剪枝是极小最大算法的修改版本。它是极小最大算法的一种优化技术。正如我们在极小最大搜索算法中看到的那样,它必须检查的游戏状态数量在树的深度上呈指数增长。由于我们无法消除指数,但可以将其减半。因此,有一种技术可以计算出正确的极小极大决策,而无需检查博弈树的每个节点,这种技术称为剪枝。这涉及两个阈值参数 Alpha 和 beta,用于未来扩展,因此称为 alpha-beta 剪枝。它也被称为 Alpha-Beta 算法。
模块 II:(12 小时)对抗性搜索 - 游戏、Mini-Max 算法、多人游戏中的最佳决策、Alpha-Beta 剪枝、评估函数、切断搜索、逻辑代理 - 基于知识的代理、逻辑、命题逻辑、命题逻辑中的推理模式、解析、前向和后向链接 - 一阶逻辑 - 一阶逻辑的语法和语义、使用一阶逻辑、一阶逻辑中的知识工程 - 一阶逻辑中的推理 - 命题与一阶推理、统一和提升、前向链接、后向链接、解析
图 4. 说明原型量子应用工作流程的图表。传统量子算法通常首先初始化经典状态,然后通过应用 Hadamard 门 (𝐻 ⊗ 𝑁) 并行生成量子并行性。随后,对输入数据进行编码,通常以量子态的振幅和相位进行编码,或者应用 oracle。然后,计算过程以叠加方式进行,最后以 READ 操作(测量)结束。值得注意的是,虽然算法的初始阶段最大化了量子并行性,但提取有意义的结果通常依赖于通过破坏性干扰来修剪错误结果。
系统不合适,应该用公共汽车代替。20 世纪 30 年代,有轨电车线路开始逐渐减少,但从 1933 年到 1936 年,共有 250 辆新轿车投入使用。有轨电车系统的价值最好地体现在二战期间运送的乘客人数上。1944-45 年,这一数字达到顶峰,为 404,630,000。战后政客们承诺将建造一支新车队,最初订购了 250 辆。1950 年至 1953 年间,交付了 100 辆新的 Rl 级有轨电车,而其余 150 辆车的合同被取消。
通过搜索-II和命题逻辑对手搜索解决问题:游戏,游戏中的最佳决策,alpha – beta修剪,实时决策不完善。约束满意度问题:定义约束满意度问题,约束传播,回溯搜索CSP,本地搜索CSP,问题的结构。命题逻辑:基于知识的代理,王子世界,逻辑,命题逻辑,命题定理证明:推论和证明,通过解决方案,霍恩条款和确定的条款证明,前向和向后链条,有效的命题模型,基于命题逻辑。单位-III
尖峰神经网络(SNN)在推理过程中在功耗和事件驱动的属性方面具有显着优势。为了充分利用低功耗并提高了这些模型的效率,已经探索了修剪方法,以找到稀疏的SNN,而无需在训练后没有冗余连接。但是,参数冗余仍然会阻碍训练过程中SNN的效率。在人脑中,神经网络的重新布线过程是高度动态的,而突触连接在脑部消除过程中保持相对较少。受到此启发,我们在这里提出了一个名为ESL-SNNS的SNN的有效进化结构学习(ESL)框架,以实现从头开始实施稀疏的SNN训练。SNN中突触连接的修剪和再生在学习过程中动态发展,但将结构稀疏保持在一定水平。因此,ESL-SNN可以通过在时间上列出所有可能的参数来搜索最佳的稀疏连接。我们的实验表明,所提出的ESL-SNNS框架能够有效地学习稀疏结构的SNN,同时降低有限的精度。ESL-SNN仅达到0。在DVS-CIFAR10数据集上具有10%连接密度的28%抗性损失。我们的工作提出了一种全新的方法,可以通过生物学上合理的进化机制对SNN进行稀疏训练,从而缩小了稀疏训练和密集培训之间的明确攻击差距。因此,它具有SNN轻量级训练和低功耗和少量记忆使用情况的巨大潜力。
参数化的量子电路(PQC)由于其在近期嘈杂的中间尺度量子(NISQ)硬件上实现量子优势的潜力,使搜索兴趣增加了搜索兴趣。为了实现可扩展的PQC学习,需要将培训过程卸载到真实的量子机上,而不是使用指数性的经典模拟器。获得PQC差异的一种常见方法是参数移位,其成本与量子数的数量线性缩放。我们提出了QoC,这是与参数转移的实用片上PQC训练的第一次实验证明。永无止境,我们发现,由于真实机器上的明显量子误差(噪声),从幼稚的参数转移获得的梯度具有较低的保真度,从而降低了训练精度。为此,我们进一步提出了概率梯度修剪,以首先识别具有潜在误差的梯度,然后将其删除。特定的是,小梯度的相对误差比大梯度更大,因此可以修剪的可能性更高。我们使用5台实际量子机对5个分类任务进行量子神经网络(QNN)基准进行广泛的实验。恢复表明,对于2级和4级图像分类任务,我们的片训练的精度超过90%和60%。概率梯度修剪带来了高达7%的PQC准确性实现,没有任何修剪。总体而言,与无噪声模拟相比,我们成功获得了类似的片上训练精度,但具有更好的训练性可伸缩性。QOC代码可在Torchquantum库中可用。