ABECS 21 EOCS 16 ABFCS 13 EODCS 71 ABHCS 28 ETCS 37 ACCS 16 FCACS 46 ADCS 75 FCCS 49 AECS 60 GMCS 33 AGCS 5 GSCS 103 AMCS 104 HMCS 138 AOCS 52 HTCS 25 ASCS 34 ICCS 16 ATCS 111 ISCS 39 AWFCS 6 ITCS 95 AWOCS 12 LNCS 7 AWRCS 16 LSCS 86 AWSCS 23 MACS 102 AWVCS 7 MCCS 9 AZCS 11 MMCS 46 BMCS 59 MNCS 28 CECS 5 MRCS 3 CMCS 25 NCCS1 28 cscs 55 NCCS2 30 CTICS1 7 NDCS1 9 CTICS2 11 NDCS2 12 CTICS3 2 oscs 64 CTICS4 5 PRCS 8 CTMCS 11 PSCS 29 CWTCS 33 QMCS 19 CTRCS 26 RPCS 3 CTTCS 30 RSCS 15 cues 24 STGCS 56 DCCS 43 UTCS 5 EMCS 26 YNCS 65 ENCS 55 总计 2303
(神经元,星形胶质细胞,少突胶质细胞)。评估人神经诱导的早期事件的能力受到人类胚胎组织的可及性的限制。人类多能干细胞(PSC)的体外培养(PSC)提供了一种分析这些早期时间点作为与人PSC的神经上皮差异的方法,类似于其时间过程,形态发生,形态发生和生物化学变化的体内神经外胚层诱导(Pankratz et al。 Huang等,2016)。 在任何神经发育过程中的改变都会导致以智力障碍为特征的神经发育障碍。 实际上,遗传研究表明,与自闭症相关的基因与对神经发育的所有阶段至关重要的基因重叠,包括早期神经诱导(Casanova和Casanova,2014年),反映了在这些过程中的重要性的重要性。 最常见的智障遗传原因是由21(T21)引起的唐氏综合症(DS)。 在妊娠期胎儿和新生儿中已经建立了神经发生和皮质大小,表明对产前神经发育的变化(Ross等,1984; Wisniewski et al。,1984; Schmidt-Sidor et al。,Schmidt-Sidor et al。 Al。,2018年,Stagni等人,2019年,Patkee等人,2020年; 然而,这些结果代表了神经发育的终点,几乎没有关于T21对神经系统形成最早阶段的影响的信息。人类多能干细胞(PSC)的体外培养(PSC)提供了一种分析这些早期时间点作为与人PSC的神经上皮差异的方法,类似于其时间过程,形态发生,形态发生和生物化学变化的体内神经外胚层诱导(Pankratz et al。 Huang等,2016)。在任何神经发育过程中的改变都会导致以智力障碍为特征的神经发育障碍。实际上,遗传研究表明,与自闭症相关的基因与对神经发育的所有阶段至关重要的基因重叠,包括早期神经诱导(Casanova和Casanova,2014年),反映了在这些过程中的重要性的重要性。最常见的智障遗传原因是由21(T21)引起的唐氏综合症(DS)。在妊娠期胎儿和新生儿中已经建立了神经发生和皮质大小,表明对产前神经发育的变化(Ross等,1984; Wisniewski et al。,1984; Schmidt-Sidor et al。,Schmidt-Sidor et al。 Al。,2018年,Stagni等人,2019年,Patkee等人,2020年;然而,这些结果代表了神经发育的终点,几乎没有关于T21对神经系统形成最早阶段的影响的信息。诱导的PSC(IPSC)是由DS启用神经发育的个体产生的疾病,其遗传基础不容易在动物模型中复制(Gardiner和Davisson,2000; Antonarakis,2001; Sturgeon and Gardiner,2011; Hibaoui等,2014)。在这里,我们使用这种强大的细胞范式来解决理解T21对早期神经发育的影响的关键差距。使用T21和等源性素控制IPSC,我们使用大量RNA测序询问T21对神经诱导的分子影响。我们的结果表明,T21失调WNT信号传导并增加了炎症反应和氧化应激,突出了T21对神经发育初始阶段的影响。
a。德累斯顿电子(CFAED),德累斯顿技术大学,Helmholtzstraße18,01069,德国,电子邮件:yana.vaynzof@tu-dresden.de b。 Leibniz固态和材料研究Dresden,Helmholtzstraße,20,01069德国德累斯顿,德国无机剖宫产碘化铅(CSPBI 3)Perovskite太阳能电池(PSC)引起了极大的关注,由于其极佳的热稳定性和光学频带的应用,并适用于〜1.73 EV)。 但是,在低温下处理高效的光伏设备仍然具有挑战性。 在这里,我们报道了一种在温度较低时在低温下制造高效和稳定的γ-CSPBI 3 PSC的新方法,而不是引入长链有机阳离子盐乙烷乙烷1,2-二摩米碘化物(EDAI 2)并调节乙酸铅(PB(OAC)2)在perofskite Pressor solory中的含量(PB(OAC)2)。 我们发现EDAI 2充当可以促进γ-CSPBI 3形成的中间体,而多余的Pb(OAC)2可以进一步稳定CSPBI 3钙钛矿的γ期。 因此,在新方法制造的CSPBI 3膜中观察到了改善的结晶度和形态以及载体重组的减少。 通过优化CSPBI 3倒置太阳能电池的孔传输层,我们证明了高达16.6%的效率,超过了先前检查倒置PSC中γ-CSPBI 3的报道。 值得注意的是,封装的太阳能电池在室温和昏暗的光线下维持其初始效率的97%,持续25天,证明了Edai 2和Pb(OAC)2对稳定γ-CSPBI 3 PSC的协同作用。德累斯顿电子(CFAED),德累斯顿技术大学,Helmholtzstraße18,01069,德国,电子邮件:yana.vaynzof@tu-dresden.de b。 Leibniz固态和材料研究Dresden,Helmholtzstraße,20,01069德国德累斯顿,德国无机剖宫产碘化铅(CSPBI 3)Perovskite太阳能电池(PSC)引起了极大的关注,由于其极佳的热稳定性和光学频带的应用,并适用于〜1.73 EV)。但是,在低温下处理高效的光伏设备仍然具有挑战性。在这里,我们报道了一种在温度较低时在低温下制造高效和稳定的γ-CSPBI 3 PSC的新方法,而不是引入长链有机阳离子盐乙烷乙烷1,2-二摩米碘化物(EDAI 2)并调节乙酸铅(PB(OAC)2)在perofskite Pressor solory中的含量(PB(OAC)2)。我们发现EDAI 2充当可以促进γ-CSPBI 3形成的中间体,而多余的Pb(OAC)2可以进一步稳定CSPBI 3钙钛矿的γ期。因此,在新方法制造的CSPBI 3膜中观察到了改善的结晶度和形态以及载体重组的减少。通过优化CSPBI 3倒置太阳能电池的孔传输层,我们证明了高达16.6%的效率,超过了先前检查倒置PSC中γ-CSPBI 3的报道。值得注意的是,封装的太阳能电池在室温和昏暗的光线下维持其初始效率的97%,持续25天,证明了Edai 2和Pb(OAC)2对稳定γ-CSPBI 3 PSC的协同作用。
对于接受造口术的患者来说,造口周围皮肤并发症 (PSC) 是术后最常见的挑战。PSC 的一个视觉症状是造口周围皮肤变色(发红),这通常是由于造口输出物漏到底板下造成的。如果不加以治疗,轻微的皮肤病可能会发展成严重的疾病;因此,密切监测变色和渗漏模式非常重要。造口皮肤工具是目前最先进的造口周围皮肤评估工具,但它依赖于患者定期拜访医疗保健专业人员。为了能够长期密切监测造口周围皮肤,需要一种不依赖于预约咨询的自动化策略。多个医疗领域已经实施了基于人工智能的自动图像分析,这些深度学习算法已越来越被认为是医疗保健领域的宝贵工具。因此,本研究的主要目标是开发深度学习算法,以提供对造口周围皮肤变色和渗漏模式变化的自动、一致和客观的评估。总共使用了 614 张造口周围皮肤图像来开发变色模型,该模型预测变色的造口周围皮肤面积的准确率为 95%,精确度和召回率分别为 79.6% 和 75.0%。基于 954 张产品图像开发了预测泄漏模式的算法,确定泄漏面积的准确率为 98.8%,精确度为 75.0%,召回率为 71.5%。综合起来,这些数据首次展示了人工智能在自动评估造口周围皮肤变色和泄漏模式变化方面的应用。
光伏技术的进步肯定是由铅基钙钛矿太阳能电池(PSC)改造的。但铅毒性是其大规模商业生产和使用的巨大障碍。因此,在目前的工作中,已经对三种无铅钙钛矿材料Masni 3,Masnbr 3和Magei 3进行了彻底研究,以开发高效率和稳定性的环境友好PSC。建模的设备结构用ZnO用作电子传输层(ETL),CH 3 NH 3 SNI 3,CH 3 NH 3 NH 3 SNBR 3和CH 3 NH 3 GEI 3作为钙钛矿的吸收层(PAL),螺旋形成孔作为孔传输层(HTL),Indium掺杂锡氧化物(HTL),Indium oped Tin oxide(Ito)(ITO)(ITO)和顶部的Electode and Anode Anode Anode Anode Anode Anode Anode Anode。缺陷密度与钙钛矿吸收层的不同厚度相结合,以获得最佳的太阳能电池参数。At a thickness of 500 nm and defect density of 1 × 10 14 cm −3 of PAL, simulated Perovskite solar cell ITO/ZnO/CH 3 NH 3 SnI 3 /Spiro- OMeTAD/Au provided optimized solar cell parameters as PCE 25.95%, Voc 1.06V, Jsc 31.67mA/cm 2 and FF 77.24%, ITO/ ZnO/CH 3 NH 3 SnBr 3 /Spiro-OMeTAD/Au provided PCE 25.01%, V OC 1.02V, J SC 32.41 mA/cm 2 and FF 75.68%, ITO/ZnO/CH 3 NH 3 SnI 3 /Spiro-OMeTAD/Au provided PCE 19.66%, V OC 1.81V, J SC 14.29 mA/cm 2 and FF 75.95%.此外,对太阳能电池特征研究了界面缺陷密度,串联电阻,分流电阻和温度的影响。可以很好地观察到,基于SN的设备比基于GE的设备更有效,更稳定,反之亦然。
3均等的贡献,4个铅接触 *通信:george_church@hms.harvard.edu 1在过去十年中,基因组编辑和多能干细胞(PSC)培养的进步使研究人员生成了编辑的PSC线来研究各种生物学问题。然而,细胞系中的异常,例如非整倍性,靶标和脱靶编辑误差以及在PSC培养过程中或由于不需要的编辑结果,可能会出现微生物污染。这些异常中的任何一个都可能使实验无效,因此检测它们至关重要。下一代测序价格的持续下降使整个基因组测序(WGS)成为有效的质量控制选项,因为WGS可以检测到涉及DNA序列变化或存在不必要序列的任何异常。但是,这种方法缺乏易于使用的数据分析软件。在这里,我们提出了Seqverify,这是一种旨在获取原始WGS数据和预期编辑列表的计算管道,并验证编辑是否存在,并且没有异常。我们预计,Seqverify将成为研究人员生成编辑PSC的有用工具,并且更广泛地对细胞系质量控制。1.1关键字干细胞,多能干细胞,整个基因组测序,微生物污染,非整倍性,基因组编辑,单核苷酸多态性,软件,质量控制,Seqverify 2简介多发性干细胞(PSC)在许多细胞中都在生物学研究中发现了各种细胞的重要用途。 PSC。基因编辑技术(例如CRISPR-CAS9)已使PSC线的工程能够包含感兴趣的潜在等位基因,例如与疾病相关的突变或Nluorescent Reporters。
Martin Brinkmann博士,ICS培训2:结构和形态对掺杂聚合物半导体共轭聚合物(CPS)的热电特性的影响在塑料电子中以半导体和导电聚合物的形式无处不在,这些聚合物是诸如诸如太阳能电池,现场效应型和热型晶体管和热型晶体和热型的诸如诸如太阳能电池中的集中的。利用这种共轭材料的各向异性特性要求采用先进有效的生长和方向方法。首先,此贡献回顾了塑料电子中使用的共轭聚合物的不同比对方法。第二,我们介绍了高温摩擦方法的艺术状态,该方法广泛用于制造排列的聚合物半导体(PSC)和导电聚合物(CP)膜。示例用于说明这种大规模取向的多功能方法如何用于设计具有各向异性光学特性的设备。Finally, we emphasize the recent progress made in the fabrication of highly ordered and oriented CPs by controlled doping of well-crystallized PSCs such as regioregular poly(3- hexylthiophene-2,5-diyl) and poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2- b ]thiophene].将掺杂分子引入并修改这些PSC的晶体晶格的方式。讨论了聚合物的半晶结构对定向薄膜的掺杂和产生的热电性能的影响。伊夫琳·马丁(Evelyne Martin)博士,ICUBE培训3:热瞬变的原子尺度建模:应用于纳米结构,无定形和聚合物材料。在本演示文稿中,我将使用从头算分子动力学(将召回的原理)模拟在原子量表上描述的材料中的热瞬变。i将显示如何用于提取导热率及其由于微型化而引起的变化。我将介绍不同材料,晶体,无定形和有机材料的情况,并讨论观察到的行为的基础。
有机-无机金属卤化物钙钛矿正在迅速接近最先进的硅太阳能电池,性能最佳的设备现在已达到 25.7% 的能量转换效率 (PCE)。[1] 尽管稳定性仍然是钙钛矿太阳能电池 (PSC) 面临的挑战,但它们的溶液加工性是一大优势。刮刀涂布、[2] 狭缝模头涂布 [3] 和喷涂 [4] 等技术与卷对卷 (R2R) 加工兼容,原则上,这应该可以实现比现有硅太阳能技术高得多的生产速度。然而,用于结晶钙钛矿活性层的漫长退火时间降低了实际制造过程中可以达到的最大理论网速。2020 年,Rolston 等人展示了所有可扩展 PSC 加工技术中最高的涂层速度,实现了 > 12 m min −1 的生产速度。 [5] 喷涂工艺与大气等离子体后处理工艺相结合,[6] 制备出的 PSC 器件和模块的 PCE 分别为 18% 和 15.5%。至关重要的是,它们是在不对钙钛矿层进行退火的情况下制造的。在这种速度下,模块成本预计可以与 Si 完全竞争。[7] 相比之下,经过 10 分钟退火的旋涂 PSC 的计算吞吐率仅为 0.017 m min −1 ;这个速率远远超出了商业化要求。此外,高温处理步骤会增加公用设施成本并降低吞吐率,从而增加了器件制造成本。[8] 高工艺温度也与许多敏感的柔性(聚合物)基板不兼容,而这些基板预计在“物联网”应用中非常重要。[9,10] 这个不断增长的市场预计将使钙钛矿的初始投资和市场进入门槛降低一个数量级。[11]
胰腺癌具有促结缔组织增生性,具有高度间质样基质,有利于缺氧,诱导上皮-间质转化 (EMT) 并导致肿瘤细胞转移 (7)。胰腺癌被致密的纤维化基质包围,基质内含有致密的团块、胰腺星状细胞 (PSC) 和细胞外基质。基质创造了一个缺氧微环境,在促进胰腺癌细胞发育和诱导肿瘤细胞转移方面发挥重要作用 (8)。例如,癌细胞通过改变线粒体功能来适应缺氧,以实现最佳代谢和能量供应。低氧水平可诱导线粒体还原羧化并在癌细胞中产生活性氧 (ROS),从而诱导胰腺癌的快速发展 (9)。