量子力学改变了我们对物理世界的看法,在过去的二十年中,物理系统的量化特征也已成为技术不同分支的资源[1,2]。尤其是,当计量学遇到量子机械时,就可以使用整个新的新特征来提高物理测量的精度,并构想新颖的量子增强方案以表征信号和设备[3-5]。相对论也改变了物理的范例,并发现了相关的技术应用[6]。因此,是否可以共同利用相对论和量子机械性能以提高物理测量的精度。在本文中,我们遵循了这一想法,并证明了范式相对论特征,重力时间扩张确实可能代表了可以与量子叠加一起使用的资源,以证明重力常数的估计或其变化。
半个多世纪以来,蛋白质折叠一直是最困难的问题之一,随机热运动导致构象变化,从而导致能量下降到天然结构,这是漏斗状能量景观中捕获的原理。未折叠的多肽具有广泛的可能构象。由于潜在构象随链长呈指数增长,搜索问题对于经典计算机来说变得难以解决。到目前为止,有理论和实验证据表明,使用量子退火、VQE 和 QAOA 等量子计算方法解决此类优化问题具有优势。虽然谷歌的 DeepMind-AlphaFold 已经取得了很大成就,但我们可以通过量子方法走得更远。在这里,我们展示了如何使用变分量子特征求解器预测蛋白质结构以及 RNA 折叠,并使用条件风险值 (CVaR) 期望值来解决问题并找到最小配置能量,我们的任务是确定蛋白质的最小能量结构。蛋白质的结构经过优化以降低能量。还要确保满足所有物理约束,并将蛋白质折叠问题编码为量子比特算子。
V Veitch、SAH Mousavian、D. Gottesman 和 J Emerson。稳定器量子计算的资源理论。《新物理学杂志》,16(1):013009,2014 年
对于具有局部平移不变哈密顿量的任意空间维度的量子自旋系统,我们证明,如果状态是平移不变和空间遍历的,则通过热力学可行的一类量子动力学(称为热操作)从一个量子态到另一个量子态的渐近状态转换完全可以用 Kullback-Leibler (KL) 发散率来表征。我们的证明由两部分组成,用量子信息论的一个分支资源理论来表述。首先,我们证明,任何状态,对于这些状态,最小和最大 Rényi 发散度近似地坍缩为一个值,都可以在小的量子相干源的帮助下通过热操作近似可逆地相互转换。其次,我们证明,对于任何平移不变的遍历状态,这些发散度渐近地坍缩为 KL 发散率。我们通过对量子 Stein 引理的推广来证明这一点,该引理适用于独立同分布 (iid) 情况以外的量子假设检验。我们的结果表明,KL 发散率可作为热力学势,在热力学极限下,包括非平衡和完全量子情况,提供量子多体系统遍历态热力学可转换性的完整表征。
摘要:黑洞信息之谜源于广义相对论与量子理论对黑洞辐射性质的结论存在差异。根据霍金最初的论证,辐射是热的,因此其熵会随着黑洞的蒸发而单调增加。相反,由于量子理论中时间演化的可逆性,辐射熵应该在一定时间后开始减小,正如佩奇曲线所预测的那样。基于复制技巧的新计算证实了这种减小,并揭示了其几何起源:复制品之间形成的时空虫洞。在这里,我们从量子信息论的角度分析了这些结论与霍金最初结论之间的差异,特别是使用了量子德菲内蒂定理。该定理意味着存在额外的信息 W,它既不是黑洞的一部分,也不是辐射的一部分,而是起着参考的作用。通过复制技巧获得的熵可以被识别为以参考 W 为条件的辐射的熵 S ( R | W ),而霍金的原始结果对应于非条件熵 S ( R )。熵 S ( R | W ) 在数学上是集合平均值,在对 N 个独立准备的黑洞进行实验时,它获得了操作意义:对于较大的 N ,它等于它们联合辐射的归一化熵 S ( R 1 · · · RN ) / N 。这个熵和 S ( R ) 之间的差异意味着黑洞是相关的。因此,复制虫洞可以被解释为这种相关性的几何表示。我们的结果还表明广泛使用的随机幺正模型可以扩展到多黑洞,我们通过非平凡检验支持了这一点。
研究人员得出了计算关键量子信息量的公式,包括纠缠熵(量化了纠缠系统的纠缠方式),相互信息(测量系统的两个部分之间的共享信息)和相对熵(量化量的差异)。这些数量对于了解量子系统的不同部分如何相互作用和影响彼此至关重要。
为了确保准确性,在绝对零的温度下进行实验,将背景噪声降低至几乎没有。KERR谐振器是关键的,因为它可以扩增通常无法观察到的量子效应。因为它可以对具有极高敏感性的两光孔信号做出响应,因此研究人员能够使用它以前所未有的精确度探索相过渡 - 传统设置简直无法实现。
检查。论文是:•Max Planck 23。4。1858 Kiel•Arnold Sommerfeld 5.12。 1868Königsberg•Albert Einstein 14。 3。 1879 ULM•Ernest Rutherford 30。 8。 1871 Spring Grove•Max Burn 11 12. 1882 Breslau•James Franck 26。 8。 1882 Hamburg•Niels Bohr 7。 10。 1885哥本哈根•ErwinSchrödinger12。 8。 1887 VIENNA•WOLFGANG PAULI 25。 4。 1900维也纳•Werner Heisenberg 5.12。 1901Würzburg•Enrico Fermi 29。 9。 1901罗马•Paul Dirac 8。 8。 1902 Bristol•Pascual Jordan 18。 10。 1902 Hannover•Lew Landau 22。 1。 1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。 7。 1911佛罗里达•理查德·费曼(Richard Feynman)11。 5。 1918皇后区,纽约•朱利安·施温格12。 2。 1918纽约市1858 Kiel•Arnold Sommerfeld 5.12。1868Königsberg•Albert Einstein 14。 3。 1879 ULM•Ernest Rutherford 30。 8。 1871 Spring Grove•Max Burn 11 12. 1882 Breslau•James Franck 26。 8。 1882 Hamburg•Niels Bohr 7。 10。 1885哥本哈根•ErwinSchrödinger12。 8。 1887 VIENNA•WOLFGANG PAULI 25。 4。 1900维也纳•Werner Heisenberg 5.12。 1901Würzburg•Enrico Fermi 29。 9。 1901罗马•Paul Dirac 8。 8。 1902 Bristol•Pascual Jordan 18。 10。 1902 Hannover•Lew Landau 22。 1。 1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。 7。 1911佛罗里达•理查德·费曼(Richard Feynman)11。 5。 1918皇后区,纽约•朱利安·施温格12。 2。 1918纽约市1868Königsberg•Albert Einstein 14。3。1879 ULM•Ernest Rutherford 30。 8。 1871 Spring Grove•Max Burn 11 12. 1882 Breslau•James Franck 26。 8。 1882 Hamburg•Niels Bohr 7。 10。 1885哥本哈根•ErwinSchrödinger12。 8。 1887 VIENNA•WOLFGANG PAULI 25。 4。 1900维也纳•Werner Heisenberg 5.12。 1901Würzburg•Enrico Fermi 29。 9。 1901罗马•Paul Dirac 8。 8。 1902 Bristol•Pascual Jordan 18。 10。 1902 Hannover•Lew Landau 22。 1。 1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。 7。 1911佛罗里达•理查德·费曼(Richard Feynman)11。 5。 1918皇后区,纽约•朱利安·施温格12。 2。 1918纽约市1879 ULM•Ernest Rutherford 30。8。1871 Spring Grove•Max Burn 11 12.1882 Breslau•James Franck 26。8。1882 Hamburg•Niels Bohr 7。10。1885哥本哈根•ErwinSchrödinger12。8。1887 VIENNA•WOLFGANG PAULI 25。 4。 1900维也纳•Werner Heisenberg 5.12。 1901Würzburg•Enrico Fermi 29。 9。 1901罗马•Paul Dirac 8。 8。 1902 Bristol•Pascual Jordan 18。 10。 1902 Hannover•Lew Landau 22。 1。 1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。 7。 1911佛罗里达•理查德·费曼(Richard Feynman)11。 5。 1918皇后区,纽约•朱利安·施温格12。 2。 1918纽约市1887 VIENNA•WOLFGANG PAULI 25。4。1900维也纳•Werner Heisenberg 5.12。1901Würzburg•Enrico Fermi 29。 9。 1901罗马•Paul Dirac 8。 8。 1902 Bristol•Pascual Jordan 18。 10。 1902 Hannover•Lew Landau 22。 1。 1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。 7。 1911佛罗里达•理查德·费曼(Richard Feynman)11。 5。 1918皇后区,纽约•朱利安·施温格12。 2。 1918纽约市1901Würzburg•Enrico Fermi 29。9。1901罗马•Paul Dirac 8。8。1902 Bristol•Pascual Jordan 18。10。1902 Hannover•Lew Landau 22。1。1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。7。1911佛罗里达•理查德·费曼(Richard Feynman)11。5。1918皇后区,纽约•朱利安·施温格12。2。1918纽约市
不降低发射光子的性质,并且可以独立用于同一芯片上的单个NW-QD,到目前为止仍然是一个挑战。解决此问题对于将光子与需要MHz相连的量子系统与Sub-GHz精确的量子系统(例如原子集合)在量子网络中充当记忆的量子系统至关重要。在这里,我们演示了一种可逆的调整方法,可以将NW-QD的发射频率通过sub-GHz精度调整为300 GHz以上。我们通过气体凝结实现这一目标,然后通过局部激光消融将其部分逆转。此过程可很好地调节用于量子点的应力,从而调整其发射频率。我们通过调整跨原子共振的发射单光子的频率来验证该方法的精度和稳定性,以探测其吸收和分散体。我们观察到在D 1-Line共振下,在热纤维蒸气中,NW-QD的单光子吸收多达80%,并且与D 1-LINE基态的超精细转变相关的组速度下降75倍。我们观察到NW-QD发射的二阶自相关函数,寿命或线宽的效果没有明显的效果,最多可以调音300 GHz,并且在调音高达100 GHz时,我们看到对NW-QD的细胞结构分裂的影响最小。
“在我们的受控实验室实验中,我们模拟了一个湍流的自由空间量子通道,以评估我们的自适应光学系统的有效性。结果令人震惊,”博士学位Lukas Scarfe说。“没有自适应光学,湍流引入了超过安全阈值的错误,使量子密钥分布变得不可能。但是,通过启用了自适应光学功能,我们成功恢复了通道,执行高维QKD并每个光子最多三个位编码,这显着提高了关键的生成率。”