量子现象表现出“波粒二象性”——也就是说,量子系统在未被观察到的情况下会以波的形式演化(即,波穿过两个狭缝并随后与自身发生干涉)——但是当按照客观(经典)现实进行测量时,波函数就会崩溃,它确实具有客观现实(即,作为一个光子,或者如果你喜欢的话,它是一个穿过两个狭缝之一的小“球”)。因此,我们对量子系统的数学描述应该足以允许这两种可能性——它既应该能够确定(概率)测量结果,又应该完全捕捉随后的波传播(如果没有进行测量)。特别是,根据假设 1,系统完全由其状态向量描述,因此双缝处的量子态必须完全捕捉有关波粒二象性的一切。对于两级量子系统(量子比特),我们可以定性地认识到,计算基向量的复叠加具有所需的成分。计算基向量(| 0 ⟩ 和 | 1 ⟩)表示测量时可能出现的二元状态(即光子通过了哪条狭缝)——其复系数不仅能够计算出每种状态的概率,而且也足以确定后续的波传播(即屏幕右侧)(如果没有进行测量)(这就是它们必须是复数的原因)。这也提供了一种思考计算基的好方法,即在某种意义上用客观现实来表示“经典”事件,而对其的测量只是通过波函数坍缩来获得和确定这种经典现实。也就是说,量子测量只是用电压表、电流表、信号分析仪或其他仪器进行的常规测量。我们引入一般测量假设是为了完整性,但在第二部分 CST 量子计算课程中,我们几乎总是使用具有这种有形物理解释的计算基础测量。
控制由行进量子场携带的飞行量子比特 (qubits) 对于量子网络中的相干信息传输至关重要。在本文中,我们基于描述由驻留量子系统驱动的输入输出过程的量子随机微分方程 (QSDE) 开发了一个用于对飞行量子比特的控制进行建模的通用框架。在连续时间有序光子数基础上,无限维 QSDE 被简化为驻留量子系统非幺正状态演化的低维确定性微分方程,并且传出的飞行量子比特状态可以以随机发生的量子跳跃的形式表示。正如飞行量子比特生成和变换的例子所证明的那样,这使得分析激发数不保留的一般情况成为可能。所提出的框架为飞行量子比特控制系统的设计奠定了基础,可以将先进的控制技术融入实际应用中。© 2022 Elsevier Ltd. 保留所有权利。
摘要 不同位置之间的量子信息传输是许多量子信息处理任务的关键。尽管单个量子比特状态的传输已被广泛研究,但多体系统配置的传输迄今为止仍然难以捉摸。我们解决了传输 n 个相互作用的量子比特的状态的问题。呈指数增长的希尔伯特空间维数和相互作用的存在都显著增加了实现高保真度传输的复杂性。通过使用随机矩阵理论工具并利用量子动力学映射的形式,我们推导出针对 n 个相互作用的量子比特的任意量子态传输协议的保真度的平均值和方差的一般表达式。最后,通过在自旋链中采用弱耦合方案,我们获得了三和四个相互作用的量子比特高保真度传输的明确条件。
图3。在涉及数百万个量子点的10.5 k的耦合和未耦合激子的两级“宏观”量子状态的Rabi振荡。此类Rabi振荡较早仅报道了仅具有一个单个量子点的结构[3]。使用光电容测量的观察到的Rabi振荡实际上表明即使在我们的稳态光电容测量中探测的温度和时间尺度上,即使在这种温度和时间尺度上也“无关”。信用:今日材料电子产品(2023)。doi:10.1016/j.mtelec.2023.100039
假设我们有两个量子比特。如果这是两个经典比特,那么将有四种可能的状态,即 00、01、10 和 11。相应地,两个量子比特系统有四个计算基础状态,分别表示为 |00 ⟩ 、|01 ⟩ 、|10 ⟩ 、|11 ⟩ 。一对量子比特也可以存在于这四种状态的叠加中,因此两个量子比特的量子态涉及将一个复系数(有时称为振幅)与每个计算基础状态相关联,这样描述两个量子比特的状态向量就是
量子计算依赖于开发能够抵抗汉密尔顿量中微小且不受控制的参数变化的量子设备。人们可以通过实时估计这种不受控制的变化来应用反馈,以稳定量子设备并提高其相干性。这项任务对于许多量子平台(如自旋、超导电路、捕获原子和其他用于抑制或纠正错误的平台)都很重要。半导体自旋量子比特具有长相干时间、紧凑尺寸以及与现有半导体技术大规模集成的潜力,因此具有吸引力。然而,到目前为止,自旋量子比特凭借所选设备的高保真操作而大放异彩。进一步的可扩展性和可重复性可能需要主动补偿环境波动。在本论文中,我们专注于实时闭环反馈协议,以估计量子比特汉密尔顿量参数的不受控制的波动,然后提高量子比特旋转的质量。首先,我们使用低延迟量子控制器相干地控制自旋量子比特。该协议使用在砷化镓双量子点中实现的单重态-三重态自旋量子比特。我们在两个控制轴上建立实时反馈,并提高相干自旋旋转的最终品质因数。即使汉密尔顿量的某些分量完全受噪声控制,我们也展示了噪声驱动的相干控制。作为一种应用,我们在两个波动的控制轴存在的情况下实现了 Hadamard 旋转。接下来,我们提出了一种基于物理的实时汉密尔顿估计协议。我们通过根据福克-普朗克方程更新其概率分布来实时估计双点内波动的核场梯度。我们通过基于先前的测量结果自适应地选择电子单重态对的自由演化时间,进一步改进了基于物理的协议。与以前的方案相比,该协议将估计速度提高了十倍。最后,我们提出了一种自适应频率二进制搜索方案,用于有效跟踪共振驱动量子比特中的低频波动。我们实时地实施贝叶斯算法来估计磁通可调的 transmon 量子比特中的低频磁通噪声,其相干性和保真度得到了改善。此外,我们通过门集层析成像显示,我们的频率跟踪协议最大限度地减少了系统中的漂移量。我们的方法引入了闭环反馈方案,旨在减轻退相干的影响并延长量子系统的寿命。这篇论文推动了该领域的发展,即集成量子比特硬件和控制硬件,并实施计算机科学中的贝叶斯估计和优化方法。
过去几年,量子计算已从一门学术学科转变为一个吸引业界和政府极大兴趣和投资的领域。超导量子比特电路的优势在于,它几乎完全采用硅基铝(或蓝宝石)技术制成,现已扩展到 100 个量子比特。该领域的这种凝聚力使技术得到了显著改进,现在可以制造可重复的大规模电路,尽管量子处理器的复杂性很高,但该社区仍能逐渐将量子比特相干时间延长到 100 微秒以上。近年来,一些用于辅助电路的新材料(如钽)已经出现,即使目前质量最好的量子比特约瑟夫森结仍然完全采用铝技术制造,也能产生具有更高相干性的量子比特。目前,缺乏可用于直接关联所用材料和由此产生的量子比特相干性的计量工具和方法,这意味着在理解是什么限制了超导量子比特的相干性方面存在巨大差距。为什么某些材料更好尚不清楚,因此需要新的测量技术来了解量子层面的材料特性,并需要更精确地比较量子比特的性能。
“擦除量子比特”中的主要噪声是擦除 — 一种可以检测到其发生和位置的错误。擦除量子比特有可能减少与容错相关的开销。迄今为止,对擦除量子比特的研究主要集中在量子计算和量子网络应用上。在这里,我们考虑擦除量子比特在量子传感和计量方面的适用性。我们从理论上表明,对于相同级别的噪声,与非擦除量子比特相比,擦除量子比特可以充当更精确的传感器或时钟。我们通过人工将擦除误差(以原子损失的形式)或失相误差注入差分光学晶格时钟比较来实验证明这一点,并观察到在相同注入误差率的情况下,擦除误差的精度有所提高。在具有重复测量周期的时钟中,擦除可以将稳定性提高 2 倍。擦除量子比特对传感的类似好处可以在其他量子平台(如里德堡原子和超导量子比特)中实现。