未来量子互联网技术面临的一个关键挑战是连接大都市规模的量子处理器。本文,我们报告了相隔 10 公里的两个独立运行的量子网络节点之间的预示纠缠。两个承载金刚石自旋量子比特的节点通过部署的 25 公里光纤与中点站相连。我们通过将量子比特原生光子量子频率转换为电信 L 波段,并将链路嵌入可扩展的相位稳定架构中,从而使用抗损失的单击纠缠协议,将光纤光子损耗的影响降至最低。通过充分利用网络链路的全部预示能力以及长寿命量子比特的实时反馈逻辑,我们展示了在节点上传递预定义的纠缠态,而不管预示检测模式如何。我们的架构解决了关键的扩展挑战并与不同的量子比特系统兼容,为探索大都市规模的量子网络建立了一个通用平台。
Tristan 是一位国际知名的实验物理学家,因其在量子点阵列中相干传输和自旋操控方面的开创性研究而闻名。他在巴黎高等师范学院 (ENS) 的卡斯特勒布罗塞尔实验室 (LKB) 获得博士学位,师从诺贝尔奖获得者 Serge Haroche,随后在代尔夫特理工大学获得博士后奖学金,该大学是自旋量子比特实验研究的先驱中心。在加入 Quobly 担任全职 CTO 之前,Tristan 还曾领导法国国家科学研究中心 (CNRS) 格勒诺布尔的量子自旋量子比特社区。
超导码头:从基本到应用到一般范围:在过去的十年中,已经证明,约瑟夫森量子电路的超导构成理想的块,以实现量子机械实验并构建有前途的量子位,以进行量子信息处理。这些电路显示为人造原子,其特性是由电子化合物(电容,电感,隧道屏障)固定的。最近我们展示了一种新的量子测量[1],它克服了通常的局限性(见图)。我们建议研究其开放量子系统的物理特性,例如量子 - 非解析测量,量子轨迹,同时测量,并基于此新的读数以及我们最近在量子上有限的放大器上的成就[2]。
量子计算(特别是可扩展量子计算和纠错)的一个关键要求是快速且高保真度的量子比特读出。对于基于半导体的量子比特,局部低功率信号放大的一个限制因素是电荷传感器的输出摆幅。我们展示了 GaAs 和 Si 非对称传感点 (ASD),它们专门设计用于提供比传统电荷传感点大得多的响应。我们的 ASD 设计具有与传感器点强烈分离的漏极储液器,这减轻了传统传感器中的负反馈效应。这导致输出摆幅增强 3 mV,这比我们设备传统状态下的响应高出 10 倍以上。增强的输出信号为在量子比特附近使用超低功率读出放大器铺平了道路。
Optics Express 29, 14151 (2021)。Nature Communications 11, 1183 (2020)。Physical review letters 119, 180505 (2017)。New Journal of Physics 18, 103036 (2016)。
在2015年[1]实现了从单个原子中对单个原子的电子自旋共振信号的观察,并且自那时以来已经取得了相当大的进步。(有关其他参考,请参见推荐论文)。最近推荐的两篇论文报告特别引人注目的进展,这应该引起凝结问题以及量子计算社区的关注。在第一张纸中,携带s = 1/2的分子连接到STM尖端,并观察到尖锐的电子自旋共振。该共振的移位可用于感应很小的磁场和电场,并具有易A的尺度空间分辨率。第二篇论文报告了位于表面上的传感器原子的ESR信号的使用,以询问其他两个S = 1/2原子,这些原子在Qubits上使用。使用脉冲场技术证明了显着的连贯性能和两个量子操作。本评论将主要集中在第一篇论文上,最后讨论了第二篇论文。在单个离子水平上显示ESR的知名系统是Diamond的NV中心。[2] NV中心的非常狭窄的共振可用于测量局部磁场,向下降低Micro-Tesla Hz 1/2。通过将钻石放在AFM尖端上,也可以进行扫描。但是,由于NV中心位于与表面的数十纳米尺度上,因此这限制了NV中心与其靶标的距离,因此将空间分辨率与数十纳米的纳米分辨率限制。另一方面,尖端的垂直位置可以变化,这增加了测量磁性
磁性纳米 - 凯林会产生量化的螺旋性激发,并且具有独特的螺旋度的纳米丝孔之间的量子隧道表明这些颗粒的量子性质。实验方法能够无损坏解决拓扑自旋纹理的量子方面,它们的局部动力学响应以及它们的功能现在有望实现量子操作的实用设备体系结构。具有在原子层进行测量,工程和控制物质的能力,纳米 - 千里是有机会将思想转化为固态技术的机会。概念验证设备将对螺旋性提供电气控制,为基于天空的量子计算机实现量子旋转状态的有希望的新途径。这种观点旨在讨论量子磁性和量子信息的新研究途径中的发展和挑战。
通过本地隐藏变量,询问需要哪些其他资源来重新生产它们很有趣。例如,如果通过某些经典通信增加了局部隐藏变量,是否可以模拟两个纠缠量子位的本地测量统计数据?但是,由于测量值是通过连续参数描述的,因此人们可能期望复制这些量子相关性的通信成本是无限的[7]。在改进了纠缠量子的一系列改进方案[8-12]之后,Toner和Bacon在2003年取得了突破[13]。他们表明,单个经典的交流足以模拟最大纠结量子对上所有局部投影测量的统计数据。经典的通讯已被确定为贝尔非局部性的一种衡量标准[14-23],并在构建局部隐藏变量模型中找到了应用[15]。
我们考虑了在二维中的拓扑顺序的范式可解的模型,即基塔耶夫的hon-eycomb hamiltonian,并将其转变为一个仅测量的动力学,该动力学由两qubit键键操作员的随机调查组成。我们找到了一个纠缠相图,在某些方面与哈密顿问题的相似,而在其他方面则在质量上有所不同。主要测量一种类型的键时,我们发现区域法纠缠的相位,可以在系统大小的时间指数上保护两个拓扑量子(在圆环上)。这将最近提供的Floquet代码的概念泛滥,其中逻辑量子位是通过时间周期测量时间表动态生成的,它是随机设置的。当所有类型的债券以可比的频率测量时,我们发现一个临界阶段对违反该区域的键,该阶段将其与哈密顿量对应物区分开来。临界阶段具有与三方共同信息所诊断的相同拓扑Qubits相同的集合,但仅在系统大小的时间多项式中保护它们。此外,我们观察到了混合状态的动态纯化的异常行为,在后期,动态指数Z = 1 /2(一种通过测量实现的超级焊接动力学)的特征。