摘要:对称性 SU(2) 及其几何布洛赫球渲染已成功应用于单个量子比特(自旋-1/2)的研究;然而,尽管此类系统对于量子信息处理至关重要,但将此类对称性和几何扩展到多个量子比特(甚至只有两个)的研究却少得多。在过去的二十年里,两种具有独立出发点和动机的不同方法已被结合起来用于此目的。一种方法是开发两个或更多量子比特的酉时间演化以研究量子关联;通过利用相关的李代数,特别是所涉及的汉密尔顿量的子代数,研究人员已经找到了与有限射影几何和组合设计的联系。几何学家通过研究射影环线和相关的有限几何,得出了平行的结论。本综述将量子物理学的李代数/群表示视角和几何代数视角结合在一起,以及它们与复四元数的联系。总之,这可以看作是费利克斯·克莱因的埃尔朗根对称和几何纲领的进一步发展。特别是,两个量子位的连续 SU(4) 李群的十五个生成器可以与有限射影几何、组合斯坦纳设计和有限四元群一一对应。我们考虑的非常不同的视角可能会为量子信息问题提供进一步的见解。扩展适用于多个量子位,以及更高自旋或更高维度的量子位。
翻转芯片架构最近实现了多数电路的显着扩展,并已用于组装混合量子系统,这些系统结合了不同的底物,例如用于量子声学实验。标准的流芯芯片方法使用两个基板之间的超级电源电量连接,通常是使用复杂的辅助晶粒晶片键入系统实施的,这些系统可提供高度可靠且可固定的组件,但价格昂贵,但在设计中却有些影响,并且需要具有强大的底物,并且需要稳健的底物,从而可以维持对较大的压缩力对Coldium of Coldium decls of Coldium decls of Coldem bongs offers of Colds键。一种简单得多的方法是使用非常低强度的触点和气管胶粘剂组装模具,尽管这并不能在模具之间提供电力接触。在这里,我们证明了后一种技术可用于可靠地对量子电路,其中Qubits在单独的模具上,而无需电力连接。我们证明了两个模具中每个量子的全部矢量控制,并具有高度有限的单次读数,并进一步证明了纠缠产生的激发掉期,并基准了两个死亡的两个Qubit的受控Z纠缠栅极。这是一种简单且廉价的组装方法,用于二维量子电路集成,该方法支持使用精致或异常形状的底物的使用。
利用固有自旋轨道相互作用的单自旋操控是一种无需人工磁结构即可旋转自旋的技术 [1],这在半导体传输实验和量子信息技术早期至关重要。在本次演讲中,我们将介绍利用耦合多量子点中出现的自旋翻转隧穿项加速电偶极自旋共振的结果。首先,我们介绍与双量子点中的自旋翻转相关的单自旋隧穿 [2]。接下来,我们将讨论以自旋相干方式利用此效应的测量。通过在充分增加点间隧道耦合后将共振微波频率设置为磁自旋分裂,获得的 Rabi 振荡显示出增强的速度,这取决于微波幅度和点之间的能量失谐。双点中的这种自旋旋转概念扩展到三量子点,我们观察到由于扩展的电荷振荡而导致的更大加速
Optics Express 29, 14151 (2021)。Nature Communications 11, 1183 (2020)。Physical review letters 119, 180505 (2017)。New Journal of Physics 18, 103036 (2016)。
摘要:人们长期以来一直在寻找设想中的量子互联网节点的物理平台。我们在此提出了这样一个平台,以及一个概念简单、实验简单的量子信息处理方案,该方案在多个晶相量子点系统中实现。我们引入了新的定位量子比特,描述了一种构建全光量子门通用集的方法,并模拟了它们在包括退相干源在内的实际结构中的性能。我们的结果表明,定位量子比特对主要退相干机制具有鲁棒性,实际的单量子比特门保真度超过 99.9%。我们的方案为构建具有内置光子接口的多量子比特固态量子寄存器铺平了道路,这是即将到来的量子互联网的关键构建块。关键词:光学活性纳米线量子点、晶相量子结构、定位量子比特、光量子控制、绝热量曼技术
如果我们将2个超导体彼此隔开,则被薄绝缘层隔开,则两个超导体之间的相位差(θ2-θ1)将导致超导库珀对的电流在超导体之间流动。电流没有电池!这是约瑟夫森效应。
混合超导体 - 触发器设备为固态量子信息处理提供了独特的优势。特别是,自十年前的成立以来,Gatemon Qubit已被证明是一个多功能的实验平台。对于所有类型的Qubits,理解和克服的破坏性是向大规模量子计算进展的重要部分。在本论文中,提出了与GATEMON中的分层有关的三个不同的研究。首先,在有限的磁场中研究了在Inas纳米线中形成的带有完全覆盖的壳的gatemon。在应用领域中调查该系统的是可能存在Majorana零模式的可能性,该模式可用于防止逆转。观察到量子转换频率对磁场的非单调依赖性被观察并解释为破坏性的小公园效应。没有观察到有限的主要耦合(E M)的特征。通过测量值的电荷分散体,将上限放置在E m / h <10mHz时。接下来,研究了纳米诺威氏菌在纳米线gatemon中诱导的奇偶校验切换。准颗粒中毒会导致逆转状态,并且是超导Qubits损失的重要来源。在零磁场时,发现切换在100 ms的时间尺度上发生。随着温度或磁场的增加,切换速率被观察到第一个常数,然后呈指数增加,这与共存非平衡和热准粒子的常规图片一致。在零磁场上缓慢的平价切换对于gatemon连贯时间的未来发展有希望。最后,提出了对基于2DEG的盖特尼人的早期结果,其多个大门接近约瑟夫森交界处。
我一直在硅中用电子旋转建造基于PowerPoint的量子计算机已有20年了。不幸的是,基于现实生活的量子点量子计算机更难实现。材料,制造和控制挑战仍然会阻碍进度。加速发现的方法是制造和测量更多的Qubits。在这里,我讨论了将量子的实现和测试电路与材料科学和芯片上的制造分开,最终将是必要的。这种方法应该使我们在较短的术语中可以非侵入性地对其量子相关的特性来表征瓦夫夫,以在各种不同的材料上制造小量子系统,几乎没有额外的成本,甚至可以测试旋转旋转的旋转量,以使超导型孔隙纠缠方案保持最佳的腔质量,以保留最佳的腔质量。这样的测试床可以推进半导体量子信息设备的科学,并启用小量子计算机。本文也可能是对量子点旋转量子的轻松介绍。