摘要:我们研究了动态解耦技术在可公开访问的 IBM 量子计算机 (IBMQ) 上的当前有效性。该技术也称为 bang-bang 解耦或动态对称化,包括应用脉冲序列,通过对称化量子比特与环境的相互作用来保护量子比特免于退相干。该领域的研究者研究了具有不同对称性的序列,并在通常考虑单量子比特状态的 IBMQ 设备上进行了测试。我们表明,最简单的通用序列对于在 IBMQ 设备上保存双量子比特状态很有用。为此,我们考虑了单量子比特和双量子比特状态的集合。结果表明,使用可用 IBMQ 脉冲的简单动态解耦方法不足以在没有进一步关注的情况下保护一般的单量子比特状态。尽管如此,该技术对贝尔态是有益的。这鼓励我们研究逻辑量子比特编码,例如 {| 0 ⟩ L ≡| 01 ⟩ , | 1 ⟩ L ≡| 10 ⟩} ,其中量子态的形式为 | ψ ab ⟩ = a | 0 ⟩ L + b | 1 ⟩ L 。因此,我们探索了具有大量两量子比特 | ψ ab ⟩ 状态的动态解耦的有效性,其中 a 和 b 是实数振幅。据此,我们还确定 | ψ ab ⟩ 状态最能从这种动态解耦方法中受益,并减缓了其生存概率的衰减。
磁性纳米 - 凯林会产生量化的螺旋性激发,并且具有独特的螺旋度的纳米丝孔之间的量子隧道表明这些颗粒的量子性质。实验方法能够无损坏解决拓扑自旋纹理的量子方面,它们的局部动力学响应以及它们的功能现在有望实现量子操作的实用设备体系结构。具有在原子层进行测量,工程和控制物质的能力,纳米 - 千里是有机会将思想转化为固态技术的机会。概念验证设备将对螺旋性提供电气控制,为基于天空的量子计算机实现量子旋转状态的有希望的新途径。这种观点旨在讨论量子磁性和量子信息的新研究途径中的发展和挑战。
互斥类别 A + B + C +、A + B + C −、A + B − C +、A + B − C −、A − B + C +、A − B + C −、A − B − C + 和
任何构建相干量子硬件的尝试都会遭到环境的无情有害影响。为了对抗它,当今所有新兴的量子计算机都必须冷却到低温。超导量子电路需要稀释制冷机来消除热噪声1、2,离子阱处理器则需要冷却到10K以下以减少与杂散气体分子的碰撞3。这种冷却需求给量子信息处理的许多潜在应用带来了问题;它大大降低了便携式设备的前景,并严重影响了作为通信网络中继器和路由器大规模部署的成本和实用性。即使是采用单点缺陷(例如色心或稀土杂质)的光路也需要低温来减少热线展宽4-6。采用探测器作为唯一非线性元件的线性光学方案也是如此(在这种情况下是为了避免因低效检测而产生的开销)7、8。目前,只有少数平台似乎具有在室温和大气压下进行量子处理的潜力9-12。我们探索采用体光学非线性的光子电路,因为它们的非线性元件特别有前途。体非线性元件不仅不受热激发,而且由于其尺寸,受热展宽的影响较小。直到最近,实现具有体非线性的量子装置的可能性似乎还很遥远,这既是由于这些非线性的弱点,也是由于波包畸变的问题13-18。材料非线性有效强度的实质性进展、超约束腔的引入19-21以及波包畸变的相对简单的解决方案22-24改变了这种前景。实现非线性光子量子电路的物理技术并不是实现室温量子逻辑的唯一挑战。从实用性角度来看,必须使用最强的可用非线性、领先阶 χ (2) 非线性磁化率来实现这种逻辑,并且为了实现高效的室温操作,逻辑和纠错电路应避免测量或前馈控制。使用光子进行信息处理有两种基本方法。第一种是使用单轨或双轨编码,其中每种模式包含的光子不超过一个 25 。虽然这种方法的优点是可以使用完善的量子位模型的所有电路构造,但即使是为了纠正单个光子的丢失,也会导致电路复杂化。用于此目的的最小代码使用五种模式(双轨编码为十种)26、27。虽然针对五量子比特代码的最小电路的研究很少,但从七量子比特 Steane 代码的电路来看,我们估计它至少需要 9 个额外模式和 30 个以上的 CNOT 门。另一种方法是使用每个模式使用多个光子的玻色子码,但在这种情况下,实现纠错所需的门和电路还远未明朗,更不用说如何实现这些具有 χ (2) 相互作用的门了。虽然已经阐明了玻色子码的显式纠错程序 28 – 32 ,但它们都涉及非拆除或光子数分辨测量。目前尚不清楚如何构造所需的幺正多光子操作来取代仅使用 χ (2) 非线性的这种测量,或者这样做的复杂性。迄今为止,唯一明确构建的用于校正玻色子码的幺正电路是使用理想化 χ (3) 介质 33 的 40 层神经网络。在这里,我们提出了一种仅使用固定 χ (2) 非线性在多模多光子态上实现全幺正(因而是室温)量子逻辑的方法。该范式以具有时间相关驱动的单个三重谐振腔作为其基本模块,大大降低了实现所需的物理电路的复杂性
在旋转框架中观察到的两级系统的共振横向驾驶在拉比频率下两个退化状态,这是量子力学中出现的等效性。尽管成功地控制了自然和人工量子系统,但由于不循环术语等非理想性,可能会出现某些局限性(例如,可实现的栅极速度)。我们引入了一个由两个电容耦合的透射量子台形成的超导复合量子轴(CQB),其具有一个小的避免的横穿(小于环境温度)在两个能级之间。我们使用仅基带脉冲,非绝热过渡和连贯的Landau-Zener干扰来控制这种低频CQB,以实现快速,高效率,单Qubit的操作,其Clifford Fidelities超过99.7%。我们还在两个低频CQB之间执行耦合的量子操作。这项工作表明,使用仅基带脉冲可行,对低频量子的通用非绝热是可行的。
摘要:量子引力中的思想实验激发了广义不确定性关系 (GUR),这意味着与接近普朗克尺度的标准量子统计存在偏差。这些偏差已在波函数的非自旋部分得到了广泛的研究,但现有模型默认自旋状态不受量子物质传播背景的量化影响。在这里,我们探索了一种新的非局部几何模型,其中经典点的普朗克尺度涂抹会产生角动量的 GUR。这反过来又意味着自旋不确定性关系的类似概括。新的关系对应于 SU(2) 的新表示,它对描述物质几何相互作用的复合状态的两个子空间都具有非平凡作用。对于单个粒子,每个自旋矩阵都有四个独立的特征向量,对应于两个 2 倍退化特征值 ± ( ¯ h + β ) / 2,其中 β 是对有效普朗克常数的微小修正。这些表示沉浸在量子背景几何中的量子粒子的自旋状态,β 的校正是相互作用项的直接结果。除了正则量子比特状态 | 0 ⟩ = |↑⟩ 和 | 1 ⟩ = |↓⟩ 之外,还存在两个新的本征态,其中粒子的自旋与波动时空的自旋扇区纠缠在一起。我们探索了从经验上区分由此产生的“几何”量子比特 | 0 ′ ⟩ 和 | 1 ′ ⟩ 与其正则对应物的方法。
事实证明,人工神经网络 (ANN) 能够有效解决使用机器学习进行大数据分析的许多问题。ANN 可以学习和概括输入数据的复杂和非线性特征。在大数据时代,大量数据来自多个来源。预计甚至超级计算机也将被大数据淹没。由于大数据的大小和维度,在这种情况下训练 ANN 是一项具有挑战性的任务。此外,网络中需要使用和优化大量参数来学习模式并分析此类数据。量子计算正在成为一个为该问题提供解决方案的领域,因为量子计算机可以使用量子位以不同的方式表示数据。量子计算机上的量子位可用于检测数据中传统计算机难以发现的隐藏模式。因此,人工神经网络领域具有巨大的应用空间。在这项工作中,我们主要专注于使用量子比特作为人工神经元来训练人工神经网络。模拟结果表明,与传统 ANN 相比,我们的 ANN 量子计算方法 (QC ANN) 非常高效。对于二元分类任务,以量子比特为人工神经元的模型可以使用更少的参数来学习数据的特征。我们使用量子模拟器演示了我们的实验,并在经典计算机上对 QC ANN 中使用的量子参数进行了优化。
我们考虑以可验证的方式在量子网络中共享秘密量子态的任务。我们提出了一种协议,该协议可以完成此任务,同时与现有协议相比,所需的量子比特数更少。为了实现这一点,我们将量子秘密的经典加密与基于 Calderbank-Shor-Steane 量子纠错码的现有可验证量子秘密共享方案相结合。通过这种方式,我们获得了一种用于共享量子比特的可验证混合秘密共享方案,该方案结合了量子和经典方案的优点。我们的方案不会向参与协议的 n 个节点中不到一半的任何组透露任何信息。此外,为了共享一个量子比特状态,每个节点都需要一个量子存储器来存储 n 个单量子比特共享,并且需要最多 3 n 个量子比特的工作空间来验证量子秘密。重要的是,在我们的方案中,单个共享被编码在单个量子比特中,而以前的方案则需要每个共享 (log n ) 个量子比特。此外,我们定义了一个斜坡可验证的混合方案。我们给出了基于现有量子纠错码的各种可验证混合方案的具体示例。
在追求量子模拟和容错量子计算的过程中,稳健性和可调谐性之间的权衡是一个核心挑战。特别是,量子架构通常被设计为以牺牲可调谐性为代价来实现高相干性。许多当前的量子比特设计具有固定的能级,因此可控相互作用的类型有限。在这里,通过将固定频率的超导电路绝热转换为可修改的 Floquet 量子比特,我们展示了具有完全可调各向异性的 XXZ Heisenberg 相互作用。该交互模型可以充当一组富有表现力的量子操作的原语,但也是自旋系统量子模拟的基础。为了说明我们的 Floquet 协议的稳健性和多功能性,我们定制了 Heisenberg Hamiltonian 并实现了具有良好估计保真度的双量子比特 iSWAP、CZ 和 SWAP 门。此外,我们在更高的能级之间实现了 Heisenberg 相互作用,并使用它来构建三量子比特 CCZ 门,同样具有竞争保真度。我们的协议适用于多个固定频率高相干性平台,为高性能量子信息处理提供了一系列交互。它还确立了 Floquet 框架作为探索量子电动力学和最优控制工具的潜力。
电子邮件:roberto.moretti@mib.infn.it摘要 - Quantum Sensing是一个快速扩展的研究领域,在基本物理实验中找到了其应用之一,例如寻找弱EM耦合的暗物质(DM)候选候选者,NAINELELENEXION和DALK PHOTCON。超导Qubits和制造技术的最新发展对量子传感的推动进展产生了重大贡献,这要归功于它们对AC领域的高灵敏度,并且有可能基于量子非demolition(QND)[1]和直接检测来利用基于量子非demolition(QND)的检测方案。QND包括在量子系统和被困在空腔中的光子之间建立一个纠缠状态,从而使我们能够在不吸收的情况下推断光子的存在,从而实现多个测量值,从而指数抑制了深色计数速率。相反,直接检测方案依赖于共振,低功率,暗物质诱导的交流场,其量子态缓慢地旋转速度状态,该量子态可以在高碳状态的thermons和fluxoniums中衡量。此贡献是INFN QUB-IT协作的一部分,该协作旨在通过量子超导设备来推进微波单光子检测。演示将说明QUB-IT状态以实现数百微秒连贯的时间和工程DM检测设置。这项工作研究了平面transmon量子芯片芯片的建模和设计优化,利用集结振荡器模型(LOM)[3]和能量参与率(EPR)[4] [4]来提取汉密尔顿参数。基于EPR的新型策略是为了增强通过有限元模拟估算两级系统(TLS)损失估算的准确性。还讨论了通过耦合的多Qubit系统提高DM敏感性的可能性,以及在国家标准技术研究所(NIST)制造的单量芯片(NIST)的表征以及模拟和测量的Qubit参数之间的彻底比较,例如弹性频率,Anharmormonity和Anharmormonity和Anharmonicity and coupling Lustertic lofter与读取结构。这项工作中提出的初步结果有望进一步增强量子传感平台的灵敏度和可靠性,这可能会超过当前光DM搜索实验的局限性。