我们考虑以可验证的方式在量子网络中共享秘密量子态的任务。我们提出了一种协议,该协议可以完成此任务,同时与现有协议相比,所需的量子比特数更少。为了实现这一点,我们将量子秘密的经典加密与基于 Calderbank-Shor-Steane 量子纠错码的现有可验证量子秘密共享方案相结合。通过这种方式,我们获得了一种用于共享量子比特的可验证混合秘密共享方案,该方案结合了量子和经典方案的优点。我们的方案不会向参与协议的 n 个节点中不到一半的任何组透露任何信息。此外,为了共享一个量子比特状态,每个节点都需要一个量子存储器来存储 n 个单量子比特共享,并且需要最多 3 n 个量子比特的工作空间来验证量子秘密。重要的是,在我们的方案中,单个共享被编码在单个量子比特中,而以前的方案则需要每个共享 (log n ) 个量子比特。此外,我们定义了一个斜坡可验证的混合方案。我们给出了基于现有量子纠错码的各种可验证混合方案的具体示例。
量子计算面临的挑战之一是由于噪声引入的相位随机化导致相干性丧失。对于基于离子阱的量子计算机,相干性受到磁场波动和用于量子比特操作的激光器线宽的限制。本论文致力于通过使用永磁体改善磁场稳定性来增强相干性,并建立一个测试装置来减少光纤激光线宽的加宽。以前使用线圈来产生磁场。它们的稳定性受到电流驱动器噪声的限制。为了提高磁场稳定性,线圈已被永磁体取代。设计了两个固定永磁体的框架,并进行了 3D 打印,然后安装在实验中。安装后,使用 Ramsey 测量法获得 1 / √ e 相干时间 τ sens = (489 ± 21) µ s 和 τ insens = (1540 ± 80) µ s,用于量子比特状态的塞曼子能级之间对磁场的更敏感和更不敏感的跃迁,而使用线圈时,τ sens = (491 ± 25) µ s 和 τ insens = (1254 ± 53) µ s。从这些结果中,我们能够推断出磁场和激光频率波动的均方根 (RMS),无论是在使用线圈还是永磁体时,p