量子计算面临的挑战之一是由于噪声引入的相位随机化导致相干性丧失。对于基于离子阱的量子计算机,相干性受到磁场波动和用于量子比特操作的激光器线宽的限制。本论文致力于通过使用永磁体改善磁场稳定性来增强相干性,并建立一个测试装置来减少光纤激光线宽的加宽。以前使用线圈来产生磁场。它们的稳定性受到电流驱动器噪声的限制。为了提高磁场稳定性,线圈已被永磁体取代。设计了两个固定永磁体的框架,并进行了 3D 打印,然后安装在实验中。安装后,使用 Ramsey 测量法获得 1 / √ e 相干时间 τ sens = (489 ± 21) µ s 和 τ insens = (1540 ± 80) µ s,用于量子比特状态的塞曼子能级之间对磁场的更敏感和更不敏感的跃迁,而使用线圈时,τ sens = (491 ± 25) µ s 和 τ insens = (1254 ± 53) µ s。从这些结果中,我们能够推断出磁场和激光频率波动的均方根 (RMS),无论是在使用线圈还是永磁体时,p
量子系统与其环境的相互作用导致量子相干的丧失。通常通过Ancilla,建立良好的储层工程方法调整量子系统与其环境的耦合,可以通过将有效的耗散性动态逐渐发展为量子量子状态或量子状态[1-6],从而克服了有效的耗散动力学来克服脱碳范式。尤其是在电路量子电差异的范围内[7],已经成功利用了储层工程,以自主保护在谐波振荡器的限制希尔伯特空间中编码的量子信息,即玻孔代码,而无需基于测量的反馈。这是通过有效的奇偶校验的工程来实现的,它保留了耗散的演化,该耗散演化将微波谐振器的状态驱动到由相反状态的均匀和奇数相干叠加跨越具有相反位移的歧义的歧管,也称为Schrödinger猫态[8-11]。原则上,这些耗散动态可用于准备猫代码的逻辑状态[9]。尽管如此,这不是必需的,因为使用最佳控制脉冲序列[10],可以使用分散耦合量子轴对微波谐振器场进行通用控制,或者正如最近已证明的那样,已证明,连续变量(CV)通用门集的优化序列[12,13]。因此,为了稳定CAT代码的唯一目的,储层工程是为了唯一的目的。
我想到的是最近几个月,以及该项目面临的挑战,我不得不感谢许多对该项目的成功负责的人。首先要感谢Yiwen Chu教授给了我这个独特的机会,这完全改变了我的观点和职业指导。我深切感谢Ines C. Rodrigues博士的所有耐心和指导以及Yu Yang的所有耐心,并感谢他在洁净室里的所有支持和培训。我不能夸大我对他们投资于该项目的时间和精力的赞赏。此外,我衷心感谢Marius Bild,Andraz Omahen,Rodrigo Benevides博士,Stefan Pliging以及所有参与我们设备的设计,制造和测量的其他人以及该小组的其余部分,以在该项目的过程中提供他们的建议和友谊。
量子技术目前正在开发能够操纵单量子系统的量子技术。在量子领域的嫁妆中,纠缠是新型量子革命的基本资源之一。在这种情况下,当操纵系统状态时,人们面临着保护纠缠的问题。在本文中,我们研究了经典驾驶场对两个量子与波体环境相互作用的发电纠缠的影响。我们讨论了经典领域对两个(不同)量子位之间的纠缠产生的影响,以及它在保护初始状态纠缠免受其环境引起的衰减中具有建设性作用的条件。尤其是在类似Qubit的情况下,我们找到了系统的固定子空间,希尔伯特空间的固定子空间的特征是不取决于环境属性以及经典驾驶场上。因此,我们能够确定与环境短暂相互作用后达到最大纠缠的固定状态的条件。我们表明,总体而言,经典驾驶领域在强耦合体制中对纠缠保护具有建设性作用。另外,我们说明可以在与环境相互作用后的纠缠状态,甚至是在纠缠的稳态中驱动的可分解初始状态。
作为量子科学中的重要资源,量子纠缠可在计算、密码学和材料科学等领域实现广泛的应用。其中一个强大的应用领域是计量学,纠缠多粒子量子态 1 – 8 的特性可提供更高的灵敏度和更高带宽的传感器。将此类增强功能与最先进的时间和频率计量学 9 – 14 (即光学原子钟)相结合一直是量子计量领域的明确目标。构建量子增强光学时钟对大地测量学 15、16、引力波探测 17 – 19 以及探索超出标准模型的物理学 20 具有广泛的影响。存在多种创建计量上有用的纠缠的方法。在中性原子光晶格钟中,已经提出了许多使用腔量子电动力学、里德堡相互作用或碰撞相互作用的方法 21 – 26 — 事实上,最近,已经使用集体腔量子电动力学相互作用在光钟跃迁中产生了自旋压缩态 27 。在囚禁离子中,光学分离量子比特上的纠缠的提议和实现依赖于库仑晶体模式介导的自旋-自旋相互作用,允许高效地产生纠缠和格林伯格-霍恩-泽林格态,最多可产生 24 个离子光学量子比特 28 或空间分布的单粒子之间的光子量子网络
摘要 设计最佳控制脉冲以将噪声量子比特驱动至目标状态是量子工程的一项具有挑战性且至关重要的任务。在影响系统的量子噪声的属性是动态的情况下,定期表征程序对于确保模型更新至关重要。结果,量子比特的运行经常中断。在本文中,我们提出了一种协议来解决这一挑战,即利用观察者量子比特实时监控噪声。我们开发了一种基于机器学习的量子特征工程方法来设计协议。协议的复杂性在表征阶段被预先加载,从而允许在量子计算期间实时执行。我们展示了数值模拟的结果,展示了该协议的良好性能。
摘要 SM4密码算法是我国国家密码局发布的分组密码算法,已成为国际标准。通过优化量子比特数和深度乘以宽度的值实现了SM4分组密码的量子电路。在实现S盒时,基于复合域算法,针对SM4的不同阶段,提出了四种S盒的改进量子电路。在优化量子比特数时,采用量子子电路串联的方式实现SM4量子电路。实现的SM4量子电路只使用了260个量子比特,这不仅是实现SM4量子电路所用的最少量子比特数,也是实现8比特S盒、128比特明文和128比特密钥的分组密码算法所用的最少量子比特数。在优化深度乘以宽度的值时,我们通过并行实现来实现,权衡量子电路共采用288个量子比特,Toffili深度为1716,深度乘以宽度为494208,小于现有最佳值825792。
摘要。优化实施高级加密标准(AE)的量子电路对于估计Grover算法攻击AES时所需的源头至关重要。先前的研究已将AES-128/-192/-256量子电路所需的量子数从984/1112/1336到270/334/398,该量子的最佳值接近256/320/384。进一步优化它们成为一项艰巨的任务。针对此任务,我们找到了一种方法,即如何在自动型工具更轻-r的帮助下设计AES S-Box的量子电路。尤其是,f 2 8中的乘法反转是s-box的主要部分,转换为f 2 4中的乘法反向(和乘法),然后可以通过较轻的r来实现后者,因为其搜索空间足够小。通过此方法,我们构造了用于映射的S-box的量子电路| A | 0⟩到| A | s(a)⟩和| A | b⟩to | A |在先前的研究中,b s(a)⟩⟩s(a)⟩有20个QUBITS而不是22个。此外,我们引入了新技术,以减少S-box电路所需的量子数| a⟩to| s(a)⟩从以前的研究中的22个到16。因此,我们将AES-128/-192/-256的量子电路与264/328/392 Qubits合成,这意味着新记录。
多粒子纠缠态是量子信息处理和量子计量的重要资源。特别是,非高斯纠缠态被预测比高斯态具有更高的精密测量灵敏度。在计量灵敏度的基础上,传统的线性拉姆齐压缩参数 (RSP) 可以有效地表征高斯纠缠原子态,但对于范围更广、灵敏度更高的非高斯态则无效。这些复杂的非高斯纠缠态可以通过非线性压缩参数 (NLSP) 进行分类,它是 RSP 对非线性可观测量的推广,可通过 Fisher 信息识别。然而,NLSP 从未通过实验测量过。使用 19 量子比特可编程超导处理器,我们报告了在其非线性动力学过程中产生的多粒子纠缠态的表征。首先,我们选择 10 个量子比特,通过单次读取几个不同方向的集体自旋算子来测量 RSP 和 NLSP。然后,通过提取所有 19 个量子比特随时间演化状态的 Fisher 信息,我们观察到超过标准量子极限的 9.89 + 0.28 − 0.29 dB 的较大计量增益,这表明多粒子纠缠程度很高,可实现量子增强相位灵敏度。得益于高保真全控制和可寻址单次读取,具有互连量子比特的超导处理器为设计和基准测试可用于量子增强计量的非高斯纠缠态提供了理想平台。
1 CAS关键实验室,中国科学技术大学,中国Hefei 230026; hrz@mail.ustc.edu.cn(R.-Z.H. ); rlma@mail.ustc.edu.cn(R.-L.M. ); mingni@mail.ustc.edu.cn(M.N。 ); xzhang16@mail.ustc.edu.cn(X.Z. ); zy1995@mail.ustc.edu.cn(y.z。 ); wk0910@ustc.edu.cn(K.W. ); rogone@ustc.edu.cn(G.L. ); gcao@ustc.edu.cn(G.C. ); gpguo@ustc.edu.cn(G.-p.g.) 2 CAS卓越和协同创新中心量子信息和量子物理学中心,中国科学技术大学,中国科学技术大学3,中国30026年,中国北欧科学院,中国微电子学院的微电学设备和综合技术的主要实验室; kongzhenzhen@ime.ac.cn 4 Origin Quantum Computing Company Limited,Hefei 230026,中国 *通信:wanggiilei@ime.ac.ac.cn(G.-L.W. ); haiouli@ustc.edu.cn(H.-O.L.) †这些作者为这项工作做出了同样的贡献。1 CAS关键实验室,中国科学技术大学,中国Hefei 230026; hrz@mail.ustc.edu.cn(R.-Z.H.); rlma@mail.ustc.edu.cn(R.-L.M.); mingni@mail.ustc.edu.cn(M.N。); xzhang16@mail.ustc.edu.cn(X.Z.); zy1995@mail.ustc.edu.cn(y.z。); wk0910@ustc.edu.cn(K.W.); rogone@ustc.edu.cn(G.L.); gcao@ustc.edu.cn(G.C.); gpguo@ustc.edu.cn(G.-p.g.)2 CAS卓越和协同创新中心量子信息和量子物理学中心,中国科学技术大学,中国科学技术大学3,中国30026年,中国北欧科学院,中国微电子学院的微电学设备和综合技术的主要实验室; kongzhenzhen@ime.ac.cn 4 Origin Quantum Computing Company Limited,Hefei 230026,中国 *通信:wanggiilei@ime.ac.ac.cn(G.-L.W.); haiouli@ustc.edu.cn(H.-O.L.)†这些作者为这项工作做出了同样的贡献。