Loading...
机构名称:
¥ 1.0

作为量子科学中的重要资源,量子纠缠可在计算、密码学和材料科学等领域实现广泛的应用。其中一个强大的应用领域是计量学,纠缠多粒子量子态 1 – 8 的特性可提供更高的灵敏度和更高带宽的传感器。将此类增强功能与最先进的时间和频率计量学 9 – 14 (即光学原子钟)相结合一直是量子计量领域的明确目标。构建量子增强光学时钟对大地测量学 15、16、引力波探测 17 – 19 以及探索超出标准模型的物理学 20 具有广泛的影响。存在多种创建计量上有用的纠缠的方法。在中性原子光晶格钟中,已经提出了许多使用腔量子电动力学、里德堡相互作用或碰撞相互作用的方法 21 – 26 — 事实上,最近,已经使用集体腔量子电动力学相互作用在光钟跃迁中产生了自旋压缩态 27 。在囚禁离子中,光学分离量子比特上的纠缠的提议和实现依赖于库仑晶体模式介导的自旋-自旋相互作用,允许高效地产生纠缠和格林伯格-霍恩-泽林格态,最多可产生 24 个离子光学量子比特 28 或空间分布的单粒子之间的光子量子网络

光学时钟量子比特阵列中的长寿命贝尔态

光学时钟量子比特阵列中的长寿命贝尔态PDF文件第1页

光学时钟量子比特阵列中的长寿命贝尔态PDF文件第2页

光学时钟量子比特阵列中的长寿命贝尔态PDF文件第3页

光学时钟量子比特阵列中的长寿命贝尔态PDF文件第4页

光学时钟量子比特阵列中的长寿命贝尔态PDF文件第5页

相关文件推荐