首席研究员(https://www.bocklab.org/people)克里斯托夫·博克(Christoph Bock)是CEMM的首席研究员,也是维也纳医科大学的[BIO]医学信息教授。他的研究结合了生物学(单细胞测序,表观遗传学,CRISPR筛查,合成生物学)与计算(生物信息学,机器学习,人工智能) - 用于癌症,免疫学和精度医学。克里斯托夫·博克(Christoph Bock)还是CEMM生物医学主持设施的科学协调员,人类细胞地图集(HCA)成员组织了欧洲学习与智能系统(ELLIS)的欧洲实验室委员会委员会,并当选为奥地利科学院的年轻学院成员。他获得了重要的研究奖,包括ERC首发赠款(2016-2021),ERC合并赠款(2021-2026),Max Planck Soci-Ety的Otto Hahn奖章(2009年),国际计算生物学学会的Opterton奖(2017年)和Erwin Schrourian Actorecence(2017年)和国际计算生物学学院(2017年)。自2019年以来,他一直被列为世界上“高度引用的研究人员”(ISI)。他共同创立了维也纳的两家初创公司:Myllia Biotechnology和Neurolentech。
多样性和真实性 [“图8.1”](“Kitchin 2014”)。目前,量化全球数据量并不是一件简单的事情。根据国际数据组织的研究——“2020 年的数字宇宙”(“https"://bit. ly/3b4xgyy”),2020 年的数据量将达到约40 万亿千兆字节(“或 40 泽字节”)。有趣的是,大多数数据是在过去两年内生成的,到 2020 年,预计每个人每秒将生成 1.7 Mb(“https"://bit.ly/3fEQsH”),或每天生成 146,880 GB,到 2025 年每年将生成 165 泽字节(“https"://bit.ly/3b4xgyy”)。相比之下,特别是,海洋科学在过去十年中也经历了数据爆炸式增长(“Brett 等人2020”;Guidi 等人2020”)。例如,海洋微生物组的 DNA 测序自 2010 年以来产生了几百 TB 的原始数据,或世界上第一张海底数字地图
DNA测序在近几十年来彻底改变了医学。,对大型结构变化和重复DNA的分析是人类基因组的标志,受到短阅读技术的限制,读取长度为100-300 bp。长阅读测序(LRS)允许使用合成的实时测序和基于纳米孔的DI-ERCT电子测序进行实时测序,将人DNA片段的常规示例分别为数百个千倍酶对。lrs允许分析人类基因组中的大型结构变异和单倍型相分化,并能够发现和表征罕见的致病结构变异和重复探索。它最近还可以组装一个完整的,无处不在的人类基因组,该基因组包括以前棘手的区域,例如高度重复的centromeres和同源性杂技短臂。通过添加用于靶向富集,直接表观遗传DNA修饰检测和远程染色质分析方案,LRS有望在人类种群中引发对遗传多样性和致病突变的新时代。
珊瑚礁底栖生物主要由珊瑚和藻类栖息,它们经常直接竞争空间。大量研究表明,珊瑚伴生细菌与周围海水不同,并且至少部分是物种特异性的(即同一种珊瑚上有同一种细菌)。在这里,我们将这些微生物研究扩展到珊瑚礁中发现的四种主要藻类生态功能群:直立和包覆钙化藻、肉质藻和草皮藻,并将结果与在造礁珊瑚 Montastraea annularis 上发现的群落进行比较。使用 16S rDNA 标签焦磷酸测序发现,不同的藻类属含有特征性的细菌群落,这些群落通常比珊瑚上的细菌群落更加多样化。虽然大多数与珊瑚有关的细菌与已知的异养生物有关,主要消耗富含碳的珊瑚粘液,但与藻类有关的群落含有大量自养生物。大多数与藻类有关的自养细菌是蓝藻,可能对藻类的氮循环很重要。与藻类相关的光合真核生物也种类丰富,包括
微生物组与许多疾病之间的新出现联系使人类肠道浓度(GM)和营养 - 微生物组 - 宿主 - 宿主相互作用处于临床研究的最前沿,旨在探索这种联系的因果关系和影响。粪便已成为微生物组研究的最常用的生物基质,这主要是由于其无创的可用性以及对16S-RRNA基因研究的适用性。然而,粪便中的定量代谢组分分析比缓冲系统和高度ho型样品基质(如血浆或血清)中的分析更具挑战性。粪便还直接受到每日营养,药物摄入,液体摄入和肠道活性等因素的影响。结果,即使在不同时间点从同一个体中概述了样品,粪便样品的代谢组分析也比其他样品更高,甚至来自不同地形位置的同一粪便样品。这种可变性表明,迫切需要对粪便的代谢组分析进行标准化,并制定准备,并开发用于可重复和准确分析的工具。
摘要 在过去十年中,人们对肺癌分子变异的认识大大增加。几乎每年都会发现新的可靶向基因,并且已经开发出药物并为被诊断患有此类肺癌的患者提供治疗。因此,有必要更新以前的建议,以促进全奥地利对肺癌标本的诊断和分子测试进行统一处理。最初表皮生长因子受体(EGFR)的突变是唯一可操作的分子变异,现在已知的驱动突变超过 10 种,并且检测到更多的突变,并进行了临床研究。此外,测试这些突变的技术已经改进,下一代测序开辟了在一次测试中测试多个基因的选择。免疫肿瘤学已经进入该领域,除了检查点死亡受体和配体分子 PD-1/PD-L1 之外,还检测到了更多的分子并正在进行临床研究。为了给患者提供平等的机会,所有涉及肺癌管理的病理机构都必须实施检测。由于病理学家作为肿瘤委员会的一部分,必须解释诊断和分子改变并提出可能的治疗方案,因此检测应在内部进行,这将提供最佳的质量控制。
摘要。动机:单细胞RNA示例(SCRNA-SEQ)的增长量使研究人员能够研究细胞性质和基因表达曲线,从而在单细胞水平上提供了转录组的高分辨率视图。但是,SCRNA-Seq数据中通常存在的辍学事件仍然是下游分析的挑战。尽管已经开发了许多研究来恢复单细胞表达曲线,但它们的性能有时会受到不完全利用基因之间的固有关系而受到限制。结果:为了解决这个问题,我们提出了一种基于深度转移学习的方法,称为SCDTL,称为SCDTL,用于通过探索大量的RNA序列信息来推出SCRNA-Seq数据。SCDTL首先使用Denoising AutoCododer(DAE)训练批量RNA-Seq数据的插补模型。然后,我们应用了一个域的适应体系结构,该结构在批量基因和单细胞基因域之间构建图形,该结构将大量归档模型学到的知识转移到SCRNA-Seq学习任务。此外,SCDTL采用了1D U-NET DeNoising模型的并行操作,以提供不同粒度的基因表示,从而捕获了Scrna-Seq数据的粗糙和精细特征。在最后一步中,我们使用跨通道注意机制来融合从转移的散装螺旋桨和U-NET模型中学到的效果。在评估中,我们进行了广泛的实验,以证明基于SCDTL的方法可以在定量比较和下游分析中优于其他最新方法。联系人:zhangd@szu.edu.cn或tianj@sustech.edu.cn
肩突硬蜱,即黑腿蜱,是莱姆病螺旋体伯氏疏螺旋体的主要媒介,是美国每年约 47 万例莱姆病病例中的大多数是由其引起的。肩突硬蜱可以传播另外六种对人类健康有影响的病原体。由于其医学重要性,肩突硬蜱是第一个被测序和注释的蜱基因组。然而,由于节肢动物基因组特有的长重复基因组序列以及缺乏长读长测序技术所带来的技术挑战,第一个组装体肩突硬蜱 Wikel (IscaW) 高度碎片化。尽管由于胚胎注射和 CRISPR-Cas9 介导的基因编辑等新工具的出现,肩胛带蜱已成为蜱研究的模型,但缺乏染色体级支架减缓了蜱生物学的进展和控制工具的开发。在这里,我们结合了多种技术来制作肩胛带蜱 Gulia-Nuss (IscGN) 基因组组装和基因组。我们使用了来自卵和雄性和雌性成年蜱的 DNA,并利用 Hi-C、PacBio HiFi 测序和 Illumina 短读测序技术来制作染色体水平的组装。在这项工作中,我们展示了由 13 条常染色体和性假染色体组成的预测假染色体:X 和 Y,以及与现有组装和注释相比显着改进的基因组注释。
基于染色质的表观遗传记忆依赖于父母组蛋白H3 - H4四聚体的准确分布到新复制的DNA链。mcm2,复制酶的亚基和DPB3/4,DNA聚体酶ε的亚基,分别控制着父母组蛋白H3 - H4沉积到滞后和领先链中。但是,它们对表观遗传的贡献仍然存在争议。在这里,使用裂变酵母异染色质遗传系统消除了引发途径的干扰,我们表明MCM2组蛋白结合突变会严重破坏异染色质的遗传,而DPB3/4中的突变仅导致中度缺陷。令人惊讶的是,MCM2和DPB3/4的同时突变稳定异染色质遗传。ESPAN(蛋白质相关的新生DNA的富集和抑制)分析证实了在亲本组蛋白H3 - H4分离中的MCM2和DPB3/4功能的保存,其合并缺失显示出与单个单独突变相比,它们更对称性H3 - H4的对称分布。此外,组蛋白伴侣伴侣调节父母组蛋白转移到链中,并与MCM2和DPB3/4合作,以维持亲本组蛋白H3 - H4 - H4密度和忠实的异染色质遗传。这些结果强调了父母组蛋白的符号分布及其在DNA复制过程中父母组蛋白伴侣伴侣的表观遗传遗传和揭示出独特特性的符号分布的重要性。
摘要。固氮微生物(固氮菌)通过将氮气还原为生物可利用氮,显著影响海洋生产力。最近,非蓝藻固氮菌(NCD)已被确定为海洋固氮的重要贡献者。其中,Gamma A 是研究最深入的海洋 NCD 之一,因为它无处不在;然而,控制其分布的因素仍然未知。特别是,微型浮游动物摄食作为自上而下控制的重要性尚未得到检验。在本研究中,我们使用 nifH 扩增子测序研究了固氮菌群落结构,并使用稀释实验和定量聚合酶链反应(PCR)相结合的方法量化了 Gamma A 的生长和微型浮游动物摄食死亡率,地点位于日本南部海岸黑潮北缘光照充足的水域。在研究区域,Gamma A 普遍存在并在固氮菌群落中占主导地位,而蓝藻固氮菌的相对丰度较低。Gamma A 的微型浮游动物摄食率明显高于整个浮游植物群落,并且通常与其生长率保持平衡,这表明 Gamma A 可以有效地将固定氮转移到更高的营养级。尽管 Gamma A 的生长率对营养物添加没有表现出明显的反应,但 Gamma A 的丰度与营养物浓度和微量元素含量有显著的关系。