量子纠缠态的控制和操纵对于量子技术的发展至关重要。一种有前途的途径是通过它们的光学偶极-偶极相互作用耦合固态量子发射器。纠缠本身就具有挑战性,因为它需要发射器之间的纳米距离和近乎简并的电子跃迁。在这里,我们实施高光谱成像来识别耦合的二苯并蒽分子对,并通过使用斯塔克效应调整分子光学共振来找到最大纠缠的超辐射和亚辐射电子态的独特光谱特征。我们展示了使用振幅和相位定制的激光场对长寿命亚辐射离域态进行远场选择性激发。耦合分子的光学纳米显微镜揭示了由其激发路径中的量子干扰引起的空间特征,并揭示了每个发射器的位置。受控电子态叠加将有助于破译由相干耦合控制的更复杂的物理或生物机制并开发量子信息方案。
彭博新能源财经 (BNEF) 服务/信息来自精选的公共来源。彭博财经有限合伙公司及其关联公司在提供服务/信息时,相信其使用的信息来自可靠来源,但不保证该信息的准确性或完整性,该信息如有更改,恕不另行通知,本文件中的任何内容均不应被视为此类保证。本服务/文件中的陈述反映了相关文章或专题作者的当前判断,并不一定反映彭博财经有限合伙公司、彭博有限合伙公司或其任何关联公司(“彭博”)的观点。彭博对因使用本文件、其内容和/或本服务而产生的任何责任不承担任何责任。本文中的任何内容均不构成或不应被视为彭博对投资或其他策略(例如是否“买入”、“卖出”或“持有”投资)提供的金融工具或投资建议或推荐。通过本服务提供的信息并非基于对订户个人情况的考虑,不应被视为足以作为投资决策依据的信息。您应自行决定是否同意内容。本服务不应被视为税务或会计建议,或旨在帮助任何订户遵守其税务、会计或其他法律义务的服务。参与本服务的员工可能在服务/信息中提到的公司担任职务。
在过去的几十年中,空腔量子电动力学领域的进步以及电路量子电动力学为强烈和共计耦合到光模式的物质系统铺平了道路。这些实验突破使实现和研究范式理论模型(如Rabi,Tavis-Cummings和Dicke模型)在实验室中具有强烈的相互作用[4-11]。使用这些工具,一个基本问题是光与物质之间的相互作用如何相互影响,改变了分离的(潜在复杂)单个部分的特性,例如可观察结果,局部相互作用或相变的位置[12-22]。范式的光丝系统之一是Dicke模型,在光和物质部分上的设置最少[23,24]。该模型由n个单个自旋-1 / 2颗粒组成,这些粒子单独耦合到单个空腔模式。hepp和lieb显示了热力学极限n→∞可以通过Bogoliubov转换来分析求解,并具有从正常到超级阶段的二阶相变,其基态下具有非变化的光子密度[24]。虽然DICKE模型的一部分是由任意数量的旋转组成的,但在没有光结合相互作用的情况下,它会分解为非相互作用的问题,因为局部自由度仅通过腔体耦合,从而使其易于解决。一个典型的例子是Dicke-asision模型,其中最近的邻居旋转之间存在额外的ISININ相互作用。首先,在第二节。sec。sec。To make the composite system more interesting, various generalizations for the Dicke model were proposed and discussed, like more complex local spin structures [ 25 ] , multi-mode cavities [ 24 , 26 , 27 ] , non-Hermitian generalizations [ 28 ] , open systems [ 29 , 30 ] , altered light- matter interactions [ 31 , 32 ] , non-equilibrium systems [ 33 ] , and added matter-matter interac- tions between the spins [ 2 , 34,35]。使用均值场和自由度自由度的经典近似,Zhang等人。在物质部分[2]中找到了包括抗铁磁相的抗铁磁相互作用的丰富相图,其中包括抗铁磁相和顺磁相[2]。然而,使用定量数值技术,在位置以及1D中的顺序中发现了相变的偏差[1,36]。在这项工作中,我们通过考虑对物质部分的更具概括的设置来详细说明,包括长距离跳跃和关联过程,并将其耦合到单个光模式。这使我们能够研究光 - 物质和物质 - 耦合引起的相关性与效果之间的相互作用。将自己限制在与消失的光质相互作用的情况下,我们通过将其映射到有效的dicke模型来建立了该模型低能部分的分析解决方案。这使我们能够在分析的非抗抑制阶段研究这种广义的dicke模型的低覆兴激励,包括缝隙的截止,可能诱导二阶相变。本文的结构如下。2我们介绍了一般框架工作,包括广义模型和推导有效DICKE模型的先决条件。后者是在亚基中完成的。2.2和2.3,首先给出一些物理直觉,如何解决系统,然后在操作员级别上进行一般推导。3,我们将一般发现应用于Dicke-asising模型,作为示例性情况。我们比较了在热力学极限中获得的结果,与有限系统上的精确对角线化(ED)和串联扩展方法PCST ++ [3]相比,以增强有效模型的有效性。sec。 4我们得出结论,并为潜在的研究方向提供前景。sec。4我们得出结论,并为潜在的研究方向提供前景。
我们证明了非型型超级级别相变的出现和在腔量子量子电动力学系统中的新型多政治性,其中两级原子与两个窃窃私语模式微地位的两种反向传播模式相互作用。腔体以一定角度的速度旋转,并通过单向参数抽水χ22非线性挤压。腔旋转和方向挤压的组合导致非reciprocal的一阶和二阶超级相变。这些过渡不需要Ultrastrong Atom-Field耦合,并且可以通过外部泵场轻松控制。通过对哈密顿系统系统的完整量子描述,我们在相图中确定了两种类型的多个智力点,这两种点都表现出可控的非交流点。这些结果为在光结构系统中对超级级过渡和多政治行为的全面操纵打开了新的门,并在工程各种集成的非认定量子设备方面进行了潜在应用。
Dasom Kim 1 , 2 , 3 † , Sohail Dasgupta 4 , † , Xiaoxuan Ma 5 , † , Joong-Mok Park 3 , Hao-Tian Wei 4 , Liang Luo 3 , Jacques Doumani 1 , 2 , Xinwei Li 6 , Wanting Yang 5 , Di Cheng 3 , 7 , Richard H. J. Kim 3 , Henry O. Everitt 2 , 8 , 9 , Shojiro Kimura 10 , Hiroyuki Nojiri 10 , Jigang Wang 3 , 7 , Shixun Cao 5 , ∗ , Motoaki Bamba 11 , Kaden R. A. Hazzard 4 , 8 , 12 , Junichiro Kono 2 , 4 , 8 , 13 , ∗
1 福州大学物理与信息工程学院,福建省量子信息与量子光学重点实验室,福建福州 350108 2 日本理化学研究所理论量子物理实验室,日本埼玉县和光市 351-0198 3 日本理化学研究所量子计算中心 (RQC) 量子信息物理理论研究团队,日本埼玉县和光市 351-0198 4 中国科学院物理研究所、北京凝聚态物理国家实验室,北京 100190 5 中国科学院大学中国科学院拓扑量子计算卓越中心,北京 100190 6 华南理工大学物理与光电子学院,广州 510640 7 华南理工大学物理与光电子学院,现代光学仪器国家重点实验室、浙江省量子技术与器件重点实验室量子信息交叉学科中心浙江大学物理学系,杭州 310027 8 波兰波兹南亚当密茨凯维奇大学物理学院自旋电子学和量子信息研究所,61-614 9 密歇根大学物理系,密歇根州安娜堡 48109-1040,美国
Hong-Ou-Mandel (HOM) 效应是一种令人着迷的量子现象,无法用经典解释。传统上,远程非线性源已用于在 HOM 分束器上实现光子的重合。在这里,我们建议可以使用位于分束器间隙上的超辐射近场耦合发射器在本地创建 HOM 干涉所需的重合发射源。我们表明,使用 HOM 光子检测可以大大增强对分束器间隙介电常数变化的灵敏度和相应的 Fisher 信息。随后,我们概述了将超辐射发射器与实际传感器系统集成的几种策略。总之,这些发现应该为广泛的近场 HOM 量子传感器和新型量子设备铺平道路。