本研究提出了一个利用检索增强产生(RAG)来增强大肠杆菌(E.COLI)基因组学中复杂生物信息学数据的解释和分析的框架。通过整合包括成对对准的生物信息学工具,NCBI注释,多序列对准(MSA)与大语言模型(LLM)(例如GPT O3-MINI),GEMINI 2.0 Advanced Flash Thinky Thinking Thinking Thinking Trusive trining实验模型以及Grok 3,我们的方法将实时数据的试验与动态数据的自然语言生成结合。这种集成使原始计算输出转换为连贯且可访问的叙述,从而有助于对基因组组织和基因功能的更深入了解。通过检索特定于域的知识来增强llm功能的RAG框架,然后将其用于完善和上下文化生成的见解。通过自定义提示工程,我们的系统合成了不同的数据集,以突出多个大肠杆菌菌株的基因组变异,保守同义和注释一致性的关键方面。通常,我们的工作表明,将抹布与传统的生物信息学方法整合在一起,为在微生物研究中为更有效,更准确的基因组分析铺平了强大,可扩展的解决方案,以将复杂的基因组数据集转化为具有动作能力的生物学见解。
本研究提出了一种利用大型语言模型 (LLM) 应用程序架构实现生成式 AI 服务的方法。随着生成式 AI 技术的最新进展,LLM 在各个领域都获得了突出地位。在此背景下,本研究解决了信息稀缺的挑战,并提出了利用 LLM 功能的具体补救措施。该调查深入研究了缓解数据不足问题的策略,并提供了量身定制的解决方案。该研究深入研究了采用微调技术和直接文档集成来缓解数据不足的有效性。这项工作的一项重大贡献是开发了检索增强生成 (RAG) 模型,该模型解决了上述挑战。RAG 模型经过精心设计,可增强信息存储和检索过程,确保改进内容生成。
抽象疾病管理,特别是对于慢性病或老年人,涉及持续监测,生活方式调整和频繁的医疗互动,需要有效的家庭护理解决方案。为了满足这些需求,聊天机器人技术已成为支持患者自主管理健康的有前途的工具。在这种情况下,聊天机器人必须提供及时,准确的信息和持续的善解人意支持,以维持患者的参与度。此外,数据隐私问题需要避免第三方自然语言处理和发电服务。为了满足这些需求,在本文中,我们建议开发聊天机器人,以支持患者管理慢性病,重点关注高血压。特别是,由于隐私要求,我们使用开源大型语言模型来避免专有系统。鉴于他们的性能基于最先进的指标,我们不竞争第三方服务,因此我们结合了检索增强发电(RAG)技术,建立了一个知识库,并通过医学专业人员的投入来提高模型性能。我们评估了七个开源型号,其中包括两个在医疗领域进行的专门培训。我们的结果表明,抹布可显着提高性能,超过没有抹布的专门医疗域模型。这种方法提供了一种有希望的解决方案,用于独立安全地管理慢性条件。
技能集:C ++,Python,计算机视觉,数据结构,深度学习,算法,LLM,RAG,Deepstream,Deepstream,Tensorrt实习期限:6个月的绩效:绩效永久性效果Stipend咨询索引:20,000个月份:20,000
局部视黄醇可显着改善皮肤状况,包括增强皮肤水合,使表皮酸化,增强皮肤屏障以及减少皱纹的数量和体积。此外,视黄醇还通过改变皮肤微生物组以及宿主和微生物代谢物的结构和功能来重塑皮肤微生态。通过宝石构造,我们确定了2种皮肤微生物,锯齿状色素sp。和Corynebacterium kefirresidentii能够将视黄醇氧化为视网膜。超过10个皮肤微生物可以利用UDP-葡萄糖作为碳源,可能加速抹布水解并增加葡萄糖酸消耗。皮肤细胞和微生物重复使用抹布水解产生的视黄酸和视黄醇,增强视黄醇代谢及其有效持续时间。皮肤微生物组和视黄醇之间的这种结合作用可提高皮肤状况和抗衰老功效。
2不合理的研究人员,浦那。摘要可以创建许多类型的摘要,具体取决于输入文件的性质,无论是与法律,医学或其他领域有关的。首先了解主题很重要,因为不同的文档需要不同的处理方法。突出显示要点对于关注特定句子至关重要。根据主题和所需的输出,可以使用各种摘要模型。在这种情况下,我们特别关注抹布系统,以及它如何有益于取得更好的结果。关键字:检索方法,生成方法,动态知识集成,流利的语言生成,抹布(检索效果生成)1。引言在出现诸如抹布之类的高级方法之前,采用了各种方法来解决与语言有关的问题。这些可以大致分为两种类型:1。提取(在不更改句子结构的情况下检索信息)2。摘要(通过句子改革的信息检索)这些方法为诸如RAG之类的高级框架奠定了基础,这些方法将检索与生成结合起来,以获得更具动态和准确的结果。1。基于检索的方法这些方法在维护句子的原始措辞和结构时检索相关数据。常见的示例包括提取性摘要,其中关键短语或句子是直接从源中选择而没有修改的[1]。a。有效但缺乏语义理解。传统信息检索(IR)方法TF-IDF(术语频率为单位的文档频率):基于术语频率分段文档频率分数的排名文档。tf-idf是一种统计指标,用于评估文档中单词相对于文档的集合(或语料库)的重要性[2]。它广泛用于文本挖掘和信息检索任务,例如文档排名和关键字提取[3]。BM25(最佳匹配25):对TF-IDF的改进,结合了术语饱和度和文档长度归一化[4]。广泛用于搜索引擎的基于相关性的排名。BM25是一种基于TF-IDF基础的高级信息检索算法,它解决了其一些关键局限性[5]。它被广泛认为是搜索引擎和文本检索系统
neuron7.ai摘要:Neuron7的搜索工具是一种尖端的,AI驱动的解决方案,扩展了检索功能增长生成(RAG)的概念,以提供上下文感知的搜索和实时适应性。通过将抹布与实体歧义,LLM,元数据富集,视觉模型和用户反馈循环结合使用,Neuron7的搜索平台不仅可以检索和生成内容,而且可以自主完善,过滤器和适应搜索结果,以提供可行的见解。此白皮书探讨了Neuron7的搜索解决方案如何通过体现代理体系结构,提供一个基于实时输入和不断发展的用户需求的系统来使破布达到新的水平。1。简介企业搜索的景观已经发展到传统的基于关键字的搜索工具之外,这些搜索工具只需根据文本匹配来检索文档即可。当今的高级搜索解决方案利用人工智能(AI)不仅提供信息,而且提供上下文理解和可行的见解。Neuron7搜索通过将检索增强生成(RAG)与各种高级功能(例如命名实体识别(NER),元数据富集,视觉模型和实时学习)结合起来,将其提升到一个新的水平。该系统例证了代理体系结构,自主做出决定,根据这些决策采取行动,并不断从反馈中学习以增强搜索准确性和相关性。2。什么是代理体系结构?代理系统的关键特征包括:Neuron7搜索不仅可以检索数据并生成内容;它可以自主完善搜索结果,过滤数据,并旨在满足不仅需要找到信息的企业需求,而且还可以理解,上下文化和采取行动。代理体系结构是指具有自主决策,适应性行为以及根据环境投入和内部目标采取行动的系统。这些系统从环境(例如数据或用户查询)中感知输入,根据该输入做出决策,并采取行动以实现特定目标,而无需在每个决策点需要人为干预。
摘要 - 生成人工智能(Genai)的兴起正在改变电信行业。Genai模型,尤其是大型语言模型(LLMS),已成为能够推动创新,提高效率并在电信中提供卓越客户服务的强大工具。本文提供了从理论到实践的电信的Genai的概述。我们回顾了Genai模型,并讨论了他们在电信中的实际应用。此外,我们描述了有效地将Genai应用于电信的关键技术推动因素和最佳实践。我们强调了将LLMS连接到电信域特定数据源以增强LLMS响应的准确性时,检索增强生成(RAG)的重要性。我们提出了一个基于抹布的聊天机器人的真实世界用例,该案例可以回答开放式广播访问网络(O-RAN)特定问题。聊天机器人向O-Ran联盟的演示引发了对该行业的巨大兴趣。我们已经在Github上公开访问O-Ran Rag Chatbot。