摘要:本文估算了17个格陵兰气象站的降雨量,从原位降水量计测量到7种不同的降水相方案,到分开的降雨量和降雪量。为了纠正未成年人的雪/雨馏分,我们随后使用动态校正模型(DCM)进行自动气象站(AWS,PLUVIO仪表)和配备人员的回归分析校正方法(Hellmann Gauges)。累积总数的观察结果从5%到57%不等,降雨占格陵兰沿海地区年度降水总数的相当一部分,南部的降雨分数最高(Narsusuaq)。每月降水和降雨总数用于评估区域气候模型RACMO2.3。该模型实际捕获每月降雨和总降水量(r 5 0.3-0.9),其降雨相关性通常更高,而降雨相关性较高,而降雨量的降雨量(1.02-1.40)小于降雪量(1.27–2.80),因此观察结果更强大。,从1958年到现在的水平分辨率为5.5 km,模拟周期,Racmo2.3是研究格陵兰降雨的空间和时间变异性的有用工具,尽管可能需要进一步的统计降低降低降低降低量来解决陡峭的降雨梯度。
与隔离发生的危害相比,风和降雨极端的同时出现会产生更大的影响。这项研究评估了从两个角度来看,冬季,在冬季,热带气旋(ETC)产生的化合物极端。首先,我们用极端的风和降雨进行评估;使用风严重程度指数(WSI)和降雨严重程度指数(RSI)来测量占地面积的严重程度,该指数(RSI)占了这两种危险的强度,持续时间和面积。其次,我们评估了6小时的风和降雨量的局部共发生。我们从这两个角度量化了复合极端的可能性,并在控制(1981 - 2000年)和Future(2060 - 2081,RCP8.5)中的许多驱动程序(喷气流,旋风轨道和前线)中进行了表征,来自当地对流的2.2 KM Crimate Promimate Proimate Proime jections and Futor and Future(2060 - 2081,RCP8.5)。模拟表明,将来在同一风暴中产生极为严重的WSI和RSI的ETC的可能性增加,发生的频率高3.6倍(与对照中的18年相比,每5年一次)。这种频率的增加主要是由降雨强度增加驱动的,这主要是热力学驱动因素。但是,未来的风也随着强度增强的喷射流而增加,而这些事件中向南的流离失所的喷气和旋风轨道会导致温度的动态增强。这与Clausius-Clapeyron一致,这加剧了降雨,并且由于额外的潜热能而可能导致风速。未来的模拟还表明,在当地相互发生的风和极端降雨时,土地面积有所增加;尽管相对增加在冷锋附近最高,这在很大程度上解释了降雨量增加,这表明对流活动增加。在严重的WSI和RSI的暴风雨中,这些本地共同发生的极端情况更有可能,但不仅仅是局部共发生的,因此需要在ETC内部单独的驱动因素的巧合。总的来说,我们的兴趣揭示了许多促成复合风和降雨极端及其未来变化的因素。需要进一步的工作来通过对其他气候模型进行抽样来了解将来响应中的不确定性。
水文学(详见 Hall 1968 和 Tallaksen 1995 的综合评论),因为基流衰退曲线本身包含有关含水层特性的宝贵信息。基流衰退分析通常用于低流量预报、供水分配、水力发电厂设计和废物稀释方案(Tallaksen,1995)。此外,许多广泛使用的水文模型(例如美国陆军工程兵团的 HEC-1 洪水水文图包、单位水文图技术)和其他水资源应用(Vogel 和 Kroll,1996)都需要将基流与快速风暴响应分离。现有技术数量众多,并且在将基流贡献与总流量分离时主观性很高(Tallaksen,1995),这表明该问题还远未得到充分研究。水文图分离适用于不同的情况。一是流域或水道蓄水量很大的设计问题。这可以是蓄水人造结构、流道自然收缩处的蓄水或水道蓄水。该技术的应用和使用通常与集水区的额外考虑相结合,以验证该过程。实际上,这些技术正在被稍微修改并用于不同的目的。一个相对较新的项目是美国地质调查局和普渡大学 (WHAT 2004) 开发的基于 Web 的水文工具。水文图分析可以用不同的概念框架来呈现。在这篇评论中,水文图分析仅涉及将径流水文图分为两部分:直接流和基流。水文图分离方法是一个半经验过程,它基于流域和水文图形状之间不同关系的假设。
我要特别感谢我的导师 Edward Bryant 副教授,他在整个研究过程中通过提供思路、文献、计算机程序、校对等多种帮助给了我鼓励和支持。我还要感谢伍伦贡大学地球科学学院的教职员工和学术成员在我整个研究期间提出的建议和支持。还要特别感谢 A. Chivas 教授、M. Wilson 教授、B. Young 副教授、G. Nanson 副教授、C. Woodroffe 副教授、A. Young 博士、A. O'Neill 博士、L. Brown 博士、L. Head 博士、J. Formby 博士、G. Waitt 博士、R. Wray 博士、D. Price 先生、G. Black 先生和 M s. J. Shaw,他们都是十分善良的人,在我研究期间给了我许多鼓励并提供了非常宝贵的材料。我还要感谢 J. Marthick 先生利用他的计算机技能,特别是在 GIS 方面,并感谢 R. Miller 先生和 D. Martin 先生在制图方面提供的建议。我的研究生同学都非常乐于助人,善解人意。必须感谢所有这些友善的人。
摘要大西洋子午倾覆(AMOC)的崩溃将对全球降水模式产生重大影响,尤其是在脆弱的热带季风区域。我们在实验中评估了这些影响,这些实验将相同的淡水面包植入具有BISTABL AMOC的四个状态的气候模型。与以前的结果相反,我们发现降水的空间和季节性变化在各个模型之间都非常一致。我们专注于南美季风(SAM),西非季风(WAM),印度夏季季风(ISM)和东亚夏季季风(EASM)。模型始终提出对WAM,ISM和EASM的实质性破坏,其潮湿且较长的干燥季节(-29.07%,-18.76%和-3.78%的集合分别平均年降雨量变化)。模型也同意SAM的变化,这表明与以前的研究相反,降雨总体上升。在南部亚马逊( + 43.79%)中,这些更为明显,伴随着降低季节的长度。在模型中始终如一,我们的结果表明,所有热带季风系统响应AMOC崩溃,对所有热带季风系统进行了稳健而重大的重排。
水资源部(DWR)通过国家气象和水文服务(NMHS)生成和管理水电学数据。在其操作中,预报员使用世界气象组织(WMO)全球和区域专业气象中心提供的区域尺度观察数据以及预测,例如尼日尔的ACMAD,Eumetsat,ECMWF,UK MET Office,UK MET Office,IRI,IRI,Meteo,Farance和Noaa Nation National Weathere Service。DWR目前提供的服务包括最近观察结果的摘要和预测到季节性时间尺度,而气候变化适应性服务有限,主要是通过各种集中的项目提供的。季节性预测仅在5月的西非年度区域气候前景论坛(RCOF)上进行,在6月主要降雨季节开始之前,提前一个月的交货时间。7月发布了更新。此外,还收到了通过全球电信系统(GTS)传递的实时海洋观察。但是,缺乏基本的电信(Internet访问)意味着预报员通常无法下载必要的信息,查看模型和缩小的区域图像,因此无法根据需要及时产生量身定制的气候信息。DWR的人力和设备能力短缺也对气候预测办公室有挑战,以向不同的政府部门提供定制的气候数据和信息,以适应其个人利益。为了减轻DWR的这些约束,GCCA+项目启动了能力建设,该项目旨在提供机会,以解决冈比亚的季节性预测和气候变化情景的科学生产中的人力资源发展问题。目前针对DWR和其他相关机构的GCCA+能力建设计划提供了通过以下方式解决人力资源发展问题的机会。