30.1 理论宇宙射线 (CR) 是遍布宇宙的非热粒子群。它们的显著特征可以从其主要的观测特性中推断出来:光谱、成分和到达方向。对于带电 CR,能量从几十 MeV 到接近 1 ZeV,强度在 1 GeV 以上为 ∼ 104 m − 2 s − 1 sr − 1,但差分谱随能量 E 急剧下降,遵循幂律依赖性 E − γ。最显著的光谱特征是在几个 PeV 处的“膝盖”,其中谱指数 γ 从 ∼ 2.7 变为 ∼ 3,“第二个膝盖”在 ∼ 100 PeV 处变为 ∼ 3.3 和在几个 EeV 处的“脚踝”,γ 变为 ∼ 2。 5. 通量在几十 EeV 以上被大大抑制。(有关光谱特征的更详细讨论可参见下文第 30.2.1 和 30.2.2 节。)带电 CR 主要由质子、氦和其他原子核以及电子、正电子和反质子组成。到达方向大多是各向同性的,但在膝点以下和周围,由于源的分布和银河系磁场的特性,观察到有趣的 O(10-4...10-3)各向异性,在最高能量下达到 ∼O(10-1)。伽马射线可分解为来自天体物理源的伽马射线(50 MeV 以上约 6660 [ 1 ],TeV 能量下约 300 [ 2 , 3 ]),以及来自银河系和河外星系的弥散通量,主要表现出对能量的幂律依赖性。高能中微子的观测打开了一扇新的窗户;虽然分布基本上是各向同性的,但已经发现了两个河外星系源以及来自银河系平面的贡献的证据。带电 CR、弥散伽马射线和中微子的能谱如图 30.1 所示。对带电宇宙射线、伽马射线和中微子以及引力波的综合观测(见第 21.2.3 节)为我们了解最极端的天体物理环境提供了有价值的见解,这被称为多信使天体物理学。将所有物种的贡献相加,可得到全粒子谱。虽然长期以来人们认为它是一个没有特征的幂律,直到几个 PeV 的膝盖,但现在人们认识到它具有更多的结构,反映了各个物种的特征。这些特征包含有关宇宙射线加速和传输的重要信息。使用的能量变量是动能 E,即每个核子的动能,对于质量数为 A 的粒子,E n = E/A,或对于电荷数为 Z 的粒子,刚度 R ≡ pc/ ( Ze )(以伏特为单位),p 是粒子的动量;术语“刚度”是指在磁场 B 中抵抗偏转的能力:刚度低(高)的粒子具有小(大)的回旋半径 rg = R /B 。动能与量热仪器的实验特征密切相关,而刚度则是光谱仪器最自然的特征。还要注意,相对论性原子核的能量损失很小,它们的传输由磁场决定,因此它只取决于刚度。核子强度 J 也称为弥散通量,是通过能量在区间 [ E, E + d E ] 内的粒子的微分数 d N 来定义的,这些粒子在时间 dt 内从立体角 d Ω 穿过面积 d A:d N = J d E d A d Ω dt 。其各向同性部分与微分密度 ψ = (4 π/v ) J 有关,v 为粒子速度,与相空间密度 f 有关,即 J = p 2 f 。注意,强度也可以根据每个核子的粒子能量或刚度来定义。为了强调这一点,强度通常写为 d J/ d E 、d J/ d En 或 d J/ d R 。在探测 CR 方面,有两类技术 [ 4 ]。直接观测(见第 30.2.1 节)利用粒子物理探测器(例如跟踪器、光谱仪和量热仪)中的 CR 相互作用。鉴于此类仪器的曝光有限且光谱急剧下降,目前仅在低于 ∼ 100 TeV 时才切合实际。在间接观测(见第 30.2.2 节)中,
如果在已建立太阳能 REGS 连接的注入点授予非太阳能小时连接,连接协议将如何重新构建?是否有监管规定要求 CTUIL 和其他连接受让人签署三方协议?太阳能小时和非太阳能小时的定义:考虑到印度各地的气象条件各异,即使在同一州内,不同地区的太阳辐射模式也存在很大差异。因此,必须为每个州或地区定义具有特定时间段的太阳能小时。不能采用太阳能小时的通用定义,因为这会对不同地区的实体在调度电力时产生不利影响。
伽玛射线与物质互动©M。Ragheb 6/13/2024 1。引言与物质相互作用的伽玛相互作用从屏蔽它们对生物物质的影响的角度很重要。它们被认为是电离辐射,其电子和核的散射导致产生含有负电子和正离子的辐射场。与物质相互作用的相互作用的主要模式是其光电和光核形式,康普顿散射和电子正电子对产生的照片效果。在较小的程度上,还会出现光合作用,瑞利散射和汤姆森散射。这些过程中的每一个都以不同的形式出现。可能会根据伽马光子的量子力学特性而发生不同类型的散射。电子正电子对可以在核和电子的场中形成。光电效应可以消除原子电子,而光核反应会从细胞核中淘汰基本颗粒。伽马射线在放射性同位素的衰减过程中发出。在宇宙尺度上,伽玛射线爆发(GRB)或磁铁产生可能影响太空旅行和探索的强烈伽马辐射场。此外,由于雷暴的结果,大气中的地面伽马射线闪光爆发(TGF)的爆发相对较高,并且并非来自地面上看到的伽马射线的相同来源。每月观察到大约15至20个这样的事件。伽玛射线气泡。2。伽马光子能量零休息质量(例如伽马光子)的粒子将具有:
离子(1 H +、4 He +2、12 C +6、16 O +8、...),e - 、e + … γ、μ + 、μ - 、n地球的辐射环境…与危害生物突变的关键历史原因用于水文学、核材料检测粒子物理学许多发现的来源,最近
1996 年是 W. K. 伦琴发现 X 射线一百周年,人们庆祝了这种“奇异射线”提供的深刻见解。除了普遍用于对视觉不透明系统的内部结构进行成像之外,X 射线在阐明物质的几何结构和电子结构方面也具有重要应用。除了同步辐射设备外,在普通实验室环境中可用的传统 X 射线源的波长非常适合揭示晶体固体和生物分子中的原子排列。此外,吸收和发射的 X 射线的光谱可以揭示原子、分子和材料的电子结构。类似地,核 β 射线反映原子核的能级结构,其波长范围远低于 X 射线波长,就像 X 射线波长低于可见光波长一样。 1912 年首次报道的 X 射线衍射将 X 射线波长与晶格尺寸联系起来,但未能将这两个尺度与宏观物体的尺寸联系起来。从 20 世纪 30 年代初到 70 年代初,X 射线光谱对确定 N A 、h/e 和 hc/e 等基本常数做出了重要贡献。然而,这些测量受到 X 射线尺度与可见参考波长之间联系不确定性的限制。直到七十年代中期,唯一确立的直接联系是
摘要 — 研究了固态图像传感器的老化效应:产生硬错误,导致热点、暖像素或白像素。这些效应甚至发生在简单存放在架子上的图像传感器中。本文介绍了一些实验,这些实验旨在证明主要来源是中子,它们在硅块中造成位移损伤。这些中子是地球宇宙射线的一部分。这一说法基于对我们存放在架子上的设备、在飞机上飞往世界各地的设备、在高空存放的设备以及在地下实验室存放的设备进行的测量。热点的产生与技术、架构、传感器类型或传感器供应商无关,并且在电荷耦合器件以及互补金属氧化物半导体图像传感器中都可以观察到。换句话说,这是半导体基础材料硅的典型问题!本文分为两部分:本文(第 1 部分)描述了在室温下进行的实验,第 2 部分将集中讨论在较高温度下进行的实验。
1。定义伽马辐射与物质之间相互作用的主要过程:康普顿散射,光电吸收和成对创造。2。解释相互作用横截面的概念。3。得出指数衰减法。定义衰减系数的概念。定义与不同相互作用相对应的衰减系数的组件。4。康普顿散射和光电吸收对伽马量子能量的横截面依赖性的一般形状是什么?推荐阅读:1。Krane K. S.入门核物理学。纽约:约翰·威利(John Wiley&Sons),1988年。 198 - 204,217 - 220,392 - 394。2。Lilley J.核物理:原理和应用。纽约:John Wiley&Sons,2001年。 24 - 25,136 142。3。Knoll G. F.辐射检测和测量。第三版。纽约:John Wiley&Sons,2000年。 48 - 55。
*相应的电子邮件:saadedan91@gmail.com摘要在2020-2021季期间,在Al-Alam区\ Sallahiddin省的农业领域进行了一个现场实验,以研究由于γ射线的产生亚麻遗传学作物的遗传变异。The study factors included four levels of gamma rays, which were 0, 9, 18 and 27 Gy and six genotypes of the flax crop, which were Sakha1, Sakha2, Sakha3, Giza8, Syrian and Poloni, use a completely randomized block design with split plot system and was used three replications, traits studied were Duration to 50% flowering and Duration of days to maturity, Plant height, Leaves ratio,植物分支的数量,种子数量,1000种种子重量,植物产量和种子产量。The results of the study indicated that gamma rays had a significant effect on all studied traits, comparison treatment gave a lower value from the number of days to flowering 50% of plants and days to maturity (110.24) and (155.05) days, respectively, while the plants irradiated with the level 9 Gy recorded a significant superiority in the percentage of leaves (21.46) %, while the non-irradiated plants outperformed in其余的研究特征。基因型SAKHA1在营养分支数量(3.63)分支-1,每植物的胶囊数量(54.35)胶囊植物-1,单个植物产量(2.22)GM植物-1和种子产量(433.63)kg ha -1中给出了最高平均平均值。至于相互作用,它通过非辐照的Sakha1基因型具有重要意义,该基因型具有最高的每植物胶囊数量的特征,人均种子数量,个体植物产量和总种子产量(62.22)胶囊植物-1 9.96种子胶囊-1 9.96种子胶囊-1(2.89)g植物-1(2.89)g植物-1(578.60)。
摘要本报告涵盖了使用Intrabeam®系统(Carl Zeiss Meditec AG,Jena,Germany)的低KV术中辐射疗法(IORT)计划的临床实施。基于八个机构的集体用户经验,我们讨论了最佳的研究内质量保证(QA)测试,调试测量,临床工作流量,治疗计划和研究途径的研究。它描述了内部系统和调试测量以及TG100风险管理分析,以确保IORT计划的安全性和准确性。在安全检查后,进行了剂量测量,以进行验证,以进行验证,并进行对称性和对称性,X射线输出和深度剂量。还讨论了剂量线性检查,梁各向同性,离子腔室测量,校准原型和带有光学刺激的发光剂量剂量计oslds和放射性纤维纤维的体内剂量测定法。重点是定期进行IORT计划的鲁语QA程序(每日,每月和年度)的重要性。为了安全,准确的剂量递送,强调了IORT临床工作的重要组成部分的测试,例如,剂量处方,预处理质量质量质量药,治疗设置,安全检查,辐射效果以及独立的剂量检查。与体内剂量测量相关的挑战以及特殊治疗程序和屏蔽要求。我们希望该多机构报告将作为临床实施和使用内部IORT的指导文件。参考基于蒙特卡洛的商业治疗计划系统,审查了IORT治疗计划的重要性,该系统突出了其主要特征和局限性。该报告与建议的研究主题有关,包括基于CT的图像引导的治疗计划和提高处方剂量的准确性。
摘要。的结构特性,例如用γ射线照射的材料的机械和电性能受到位移损伤的影响。具有不同行为的连续过程最终导致材料内“缺陷”集的形成,例如,它可能导致物质变得脆弱。在这项研究中,蒙特卡洛代码使用基于代码的原子原子或PKA的基于代码的模拟方法提供信息,从而造成损坏。也,计算了由钴60源对铁结构特性的伽马辐射造成的损伤速率。要访问PKA信息,已经开发了一个名为Gammatrack的程序。此软件提供有关被拒绝的原子属性和相互作用运动学的信息。理论计算方法也已用于确认蒙特卡洛方法的结果。使用生成的二级电子,物质(SRIM)代码的停止和离子范围可以计算伽马辐射造成的损害。PKA数据是通过Gammatrack程序提取的,可以用作SRIM代码的输入,以进行系统分析伽马损伤。获得的铁的PKA光谱与以前的作品一致。可以意识到只生产单元,并且在钴60辐射下,原子 - 原子碰撞的可能性可以忽略不计。因此,将排除创建PKA级联反应。此外,在〜10 - 7,10 - 8(每个原子位移(DPA) /年)的理论和蒙特卡洛法(MCNPX + SRIM代码)计算时,计算铁靶的损伤率。