摘要本报告涵盖了使用Intrabeam®系统(Carl Zeiss Meditec AG,Jena,Germany)的低KV术中辐射疗法(IORT)计划的临床实施。基于八个机构的集体用户经验,我们讨论了最佳的研究内质量保证(QA)测试,调试测量,临床工作流量,治疗计划和研究途径的研究。它描述了内部系统和调试测量以及TG100风险管理分析,以确保IORT计划的安全性和准确性。在安全检查后,进行了剂量测量,以进行验证,以进行验证,并进行对称性和对称性,X射线输出和深度剂量。还讨论了剂量线性检查,梁各向同性,离子腔室测量,校准原型和带有光学刺激的发光剂量剂量计oslds和放射性纤维纤维的体内剂量测定法。重点是定期进行IORT计划的鲁语QA程序(每日,每月和年度)的重要性。为了安全,准确的剂量递送,强调了IORT临床工作的重要组成部分的测试,例如,剂量处方,预处理质量质量质量药,治疗设置,安全检查,辐射效果以及独立的剂量检查。与体内剂量测量相关的挑战以及特殊治疗程序和屏蔽要求。我们希望该多机构报告将作为临床实施和使用内部IORT的指导文件。参考基于蒙特卡洛的商业治疗计划系统,审查了IORT治疗计划的重要性,该系统突出了其主要特征和局限性。该报告与建议的研究主题有关,包括基于CT的图像引导的治疗计划和提高处方剂量的准确性。
量子点接触(QPC),这是具有量化电导的半导体二维电子系统中的收缩 - 是新型的Spintronic和拓扑电子电路的组合。QPC也可以用作量子纳米电路中的读数电子,电荷传感器或开关。与超导接触的短且无杂质的收缩是一种库珀对QPC类似物,称为超导量子点接触(SQPC)。由于维持其几何需求和接近统一的超导 - 触发器界面透明度的挑战,此类量子设备的技术发展已延长。在这里,我们开发了先进的纳米构造,材料和设备工程技术,并报告了纳米级混合SQPC阵列的创新实现,该阵列具有分开的栅极技术在半导体的2D电子系统中。我们利用了量子井的特殊门可调性,并证明了混合INGAAS-NB SQPC中电导量化的第一个实验观察。我们观察到在单个芯片中制造的多个量子纳米版本中的零磁场可重复的量化电导率,并系统地研究了在低和高磁场上SQPC的量子运输,以实现其在量子元学中的潜在应用,以实现极为准确的电压标准和缺陷量化技术。
稳定、可重复、可扩展、可寻址和可控的混合超导体-半导体 (S-Sm) 结和开关是门控量子处理器的关键电路元件和构建块。分离栅电压产生的静电场效应有助于实现纳米开关,这些纳米开关可以控制基于二维半导体电子系统的混合 S-Sm 电路中的电导或电流。这里,通过实验展示了一种新颖的大规模可扩展、栅极电压可控的混合场效应量子芯片的实现。每个芯片都包含分离栅场效应混合结阵列,它们用作电导开关,由与 Nb 超导电子电路集成的 In 0.75 Ga 0.25 As 量子阱制成。芯片中的每个混合结都可以通过其相应的源漏极和两个全局分离栅接触垫进行控制和寻址,从而允许在其 (超) 导电和绝缘状态之间切换。总共制造了 18 个量子芯片,其中有 144 个场效应混合 Nb-In 0.75 Ga 0.25 As 2DEG-Nb 量子线,并研究了低温下多个器件的电响应、开关电压(开/关)统计、量子产率和可重复性。提出的集成量子器件架构允许控制芯片上大型阵列中的单个结,这对于新兴的低温量子技术非常有用。
平面微电极阵列(MEAS) - 体外或体内 - 神经元信号记录缺乏对神经网络功能和突触可变性的详细理解所需的空间分辨率和功能的信号噪声比(SNR)。为了克服这些局限性,将高度可定制的三维(3D)打印过程与薄膜技术结合使用,并使用自动对准模板辅助的电化学沉积工艺来制造基于3D打印的衡量标准,以基于STI效率或灵活的底物。显示具有设计灵活性和身体鲁棒性的设备用于记录不同体外和体内应用中的神经活动,可实现高高度比率3D微电极高达33:1。在这里,测量在3D神经元培养物,视网膜外植体和活小鼠皮层中成功记录神经活动,从而证明了3D MEA的多功能性,同时保持高质量的神经记录。可自定义的3D MEA为在常规或各种病理状况下(体外和体内)研究神经活动提供了独特的机会,并有助于药物筛查和神经调节系统的开发,这些系统可以准确地监测大型神经网络的活性。
面部麻痹(FP)深刻影响着人际关系和情感表达,需要精确的诊断和监测工具以进行最佳护理。但是,当前的肌电图(EMG)系统受其庞大的性质,复杂的设置和对熟练技术人员的依赖的限制。在这里,我们报告了一种创新的生物传感方法,该方法利用了PEDOT:PSS-SODIFIFED浮动微针电极阵列(P-FMNEA)来克服现有EMG设备的局限性。柔软的系统水平力学确保对面部曲线区域的出色构成,从而使靶向的肌肉合奏运动能够检测到面部麻痹评估。此外,我们的设备熟练地捕获了每个电脉冲,以响应神经外科手术过程中的实时直接神经刺激。通过服务器将EMG信号的无线运输到医疗设施中增加了对患者的后续评估数据的访问,促进了及时的治疗建议,并在典型的6个月后续过程中允许访问多个面部EMG数据集。此外,该设备的软机制可以减轻空间复杂性,减轻疼痛的问题,并最大程度地减少与传统针电极定位相关的软组织血肿。这种开创性的生物传感策略有可能通过提供有效的,用户友好且侵入性较低的EMG设备来改变FP管理。这项开创性的技术可以在FP管理和治疗干预中更明智的决策。
这份全面的技术文档提供了有关生物医学研究环境中动物外科手术的重要信息。它包括关键主题,包括术前程序,麻醉管理,镇痛方案,无菌/无菌技术,外科手术程序,切口闭合方法和术后护理。必须遵守根据标准程序制度动物护理和使用委员会(IACUC)制定的准则。有关更多详细信息,请咨询您的大学的IACCARPRECRED政策。
摘要:平铺阵列使用模 2 π 相位补偿和相干光束组合来校正深湍流的影响。因此,本文使用波动光学模拟将平铺阵列的闭环性能与分支点容忍相位重构器(称为 LSPV + 7 [ Appl. Opt. 53 , 3821 (2014)])进行比较。波动光学模拟利用点源信标,并设置为从弱到强的闪烁条件。此设置可以进行权衡空间探索,以支持与 LSPV + 7 进行功率桶内比较。反过来,结果表明,在从弱闪烁条件过渡到强闪烁条件时,平铺阵列的表现优于 LSPV + 7。对于那些希望解决自适应光学中的分支点问题的人来说,这些结果既令人鼓舞又具有启发性。
摘要:在这项工作中,结合了块共聚物光刻和超低能离子植入,以获得高浓度的磷原子的纳米伏算,该磷原子在P型硅底物中定期处置在宏观区域上。高剂量的植入掺杂剂会授予硅底物的局部非晶化。在这种情况下,磷磷通过植入区域的固相外延再生(SPER)激活,并具有相对较低的温度热处理,以防止磷原子扩散并保留其空间定位。在此过程中,监测样品(AFM,SEM),硅底物(UV拉曼)的结晶度以及磷原子的位置(STEMEDX,TOF-SIMS)的位置。静电势(KPFM)和掺杂剂激活时样品表面的电导率(C-AFM)图与模拟的I-V特性兼容,这表明存在一个不理想的阵列,但工作p-n纳米结构。所提出的方法为进一步研究的可能性铺平了道路,该方法通过改变自组装的BCP膜的特征性维度来调节纳米级硅底物内的掺杂剂分布。关键字:块共聚物,离子植入,掺杂,硅,PS-B-PMMA■简介
高斯相关性出现在一大批从平衡中淬灭的多体量子系统中,如最近在耦合的一维超级流体的实验中所证明的[Schweigler等。,nat。物理。17,559(2021)]。在这里,我们提出了一种机制,通过该机制,rydberg原子阵列的初始状态可以在全局淬火后保留持续的非高斯相关性。该机制基于植根于系统基态对称性的有效动力学阻滞,从而防止了淬灭哈密顿量下的疗法动力学。我们提出了如何使用Rydberg Atom实验观察这种影响,并证明了其在几种类型的实验误差方面的韧性。由于受保护的非高斯远离平衡,这些长寿的非高斯州可能将实际应用作为量子记忆或稳定资源用于量子信息方案。
红外 (IR) 探测技术的发展主要依赖于 InAs/GaSb SL 外延 [1] 和生长后处理 [2] 的改进。为了实现最佳性能,必须优化器件架构 [3] 以及台面结构,使其侧壁垂直且光滑,以防止像素间距较小的焦平面阵列 (FPA) 中的串扰,其中周长与表面积的纵横比很高 [2, 4]。表面台面的粗糙度、反应产物的存在以及电活性缺陷的表面密度(包括断裂的化学键)都会影响表面漏电流的大小 [5]。台面型结构可以通过湿法或干法蚀刻来创建。先前的研究表明,无机和有机酸性蚀刻剂都适用于 InAs/GaSb 超晶格 (SL) 的湿法蚀刻 [5, 6]。湿法蚀刻有许多优点,例如断裂的化学键数量少、自由载流子密度降低,因此漏电流低 [6, 7]。然而,也会产生不良反应产物并残留在侧壁表面上,导致漏电流的显著增加。湿法蚀刻也是各向异性的,导致台面侧壁几何形状不理想 [8]。另一方面,InAs 和 GaSb 材料的干法蚀刻经常使用气态氯与惰性气体(如氩气)的组合 [9, 10]。气态氯因其高挥发性和高蚀刻速率而受到青睐,而氩离子通过轰击蚀刻表面简化了反应产物的解吸。BCl 3 蚀刻具有较低的蚀刻速率,但使用它会产生更光滑的台面侧壁 [11]。BCl 3 /Ar 等离子体的使用已被证明在分立探测器中是有效的。尽管如此,当用于台面时,它表现出次优性能