尽管超导量子比特为可扩展的量子计算架构提供了潜力,但执行实用算法所需的高保真度读出迄今为止仍未实现。此外,高保真度的实现伴随着较长的测量时间或量子态的破坏。在本论文中,我们通过将两个超低噪声超导放大器集成到单独的色散通量量子比特测量中来解决这些问题。我们首先演示了一个通量量子比特,该量子比特与由电容分流 DC SQUID 形成的 1.294 GHz 非线性振荡器电感耦合。振荡器的频率由量子比特的状态调制,并通过微波反射法检测。微带 SQUID(超导量子干涉装置)放大器 (MSA) 用于提高测量灵敏度,使其高于半导体放大器。在第二个实验中,我们报告了通过共享电感耦合到由交错电容器和蛇形线电感器并联组合形成的准集总元件 5.78 GHz 读出谐振器的通量量子比特的测量结果。近量子极限约瑟夫森参量放大器 (paramp) 可大幅降低系统噪声。我们展示了使用 MSA 在读出谐振器中低至百分之一光子的读出激发水平下提高保真度和降低测量反作用的测量结果,观察到读出可见度提高了 4.5 倍。此外,在读出谐振器中低于十分之一光子的低读出激发水平下,未观察到 T 1 的降低,这可能使连续监测量子比特状态成为可能。使用 paramp,我们展示了具有足够带宽和信噪比的连续高保真读出,以解决通量量子比特中的量子跳跃。这是通过读出实现的,该读出可将读出指针状态分布的误差区分为千分之一以下。再加上能够在 T 1 时间内进行多次连续读出,允许使用预兆来确保初始化到可信状态(例如基态)。这种方法使我们能够消除由于虚假热布居引起的误差,将保真度提高到 93.9%。最后,我们使用预兆引入一个简单、快速的量子比特重置协议,而无需更改系统参数来诱导 Purcell 弛豫。
虽然单次检测硅自旋量子比特现在已成为实验室常规操作,但大规模量子计算设备中量子误差校正的需求需要量子非破坏 (QND) 实现。与传统方法不同,QND 自旋读出对探测的自旋极化施加的干扰最小,因此可以重复进行以消除测量误差。在这里,我们表明,通过探测与量子比特自旋 Ising 耦合的相邻点中的另一个电子自旋,可以以高度非破坏的方式测量硅中的电子自旋量子比特。高非破坏保真度(平均 99%)使单个自旋状态的读出重复超过 20 次,在 1.2 毫秒内产生高达 95% 的总体平均测量保真度。我们进一步证明,我们的重复 QND 读出协议可以实现预期的高保真度(>99.6%)基态制备。我们基于 QND 的测量和准备,由相同类型的第二个量子位介导,将允许在硅中实现具有电子自旋的多种量子信息协议,而不会损害结构的同质性。
完全集成的量子计算架构 • >8-16 倍更高的复用率,消除了开销 • 内置错误校正 • 降低 1,000 倍的能量和热量耗散 • >10 倍更快的时钟速度 + 更低的延迟 • 降低 128 倍的控制脉冲复杂度 • 超导制造商业化就绪 • 系统组件便宜 400 倍
我们考虑了读出误差和相干误差(即确定性相位旋转)对表面代码的综合影响。我们使用一种最近开发的数值方法,通过将物理量子位映射到马约拉纳费米子。我们展示了如何在存在读出误差的情况下使用这种方法,在现象学层面上进行处理:完美的投影测量,可能记录错误的结果,以及多次重复的测量。我们发现这种错误组合的阈值,其错误率接近相应非相干错误通道(随机 Pauli-Z 和读出误差)的阈值。使用最坏情况保真度作为逻辑错误的度量,阈值错误率的值为 2.6%。低于阈值,扩大代码会导致逻辑级错误的相干性迅速丧失,但错误率高于相应非相干错误通道的错误率。我们还分别改变了相干和读出误差率,发现表面代码对相干误差比对读出误差更敏感。我们的工作将最近关于完美读出的相干误差的结果扩展到实验上更现实的情况,即读出误差也会发生的情况。
读出量子位,如图 1a 所示。图 1b-d 表示量子计算机从传统方法演变为可扩展架构。量子位是量子计算机中的基本计算块,由于其叠加和纠缠特性,可实现指数级更快的计算。量子位是一个两级系统,可以处于量子态 j ψ i ,可以表示为其两个计算基态 j 0 i 和 j 1 i 的叠加。这两个状态占据不同的层次,与经典数字逻辑零和一完全类似。量子位的状态有一个独特的注释,即布洛赫球面单位球表面上的一个点。如图 1e 所示,布洛赫球的北极和南极分别代表 j 0 i 和 j 1 i 状态,而布洛赫球表面的所有其他点则对应于不同的叠加态 j ψ i = α j 0 i + β j 1 i 。量子叠加态的振幅与平均占空比信号的经典模拟之间可以进行类比。两个电压电平 VDD 和 GND 在进行占空比和平均后,提供 VDD 和 GND 之间的所有电平,S avg = α VDD + β GND,如图 1f 所示。此外,在读出量子态时,输出要么处于 j 0 i 状态,要么处于 j 1 i 状态。同样,在读出经典模拟中的占空比平均信号时,输出要么为 VDD 要么为 GND。
亚利桑那州菲尼克斯市——美国商务部负责出口执法的助理部长马修·阿克塞尔罗德于 2 月 7 日至 8 日前往亚利桑那州菲尼克斯,纪念“颠覆性技术打击部队”成立一周年。“颠覆性技术打击部队”是一项跨机构执法工作,旨在防止关键技术被专制政权和敌对民族国家获取。助理部长阿克塞尔罗德与司法部国家安全司助理检察长马修·奥尔森共同领导打击部队,亚利桑那州地区美国检察官加里·雷斯塔诺也在凤凰城与他们会面。副检察长丽莎·莫纳科于 2023 年 2 月 16 日首次宣布成立打击部队,她发表了网络讲话纪念一周年。
测量假设是量子力学的基础 [1]。要获得有关封闭系统量子态的信息,需要与额外的读出系统(仪表)相互作用。可以设计这种相互作用,使得测得的可观测量是读出过程中运动的积分。这称为量子非破坏(QND)测量。QND 测量使重复测量能够得到相同的结果,最初旨在超越与引力波探测相关的标准量子极限 [2-4]。随着量子信息的发展,人们对 QND 测量方法的兴趣与日俱增,它们在各个方面发挥着重要作用,例如,误差校正 [5] 或通过测量初始化 [6]。超导通量量子比特 [7] 对于量子退火领域 [8-15] 尤其令人感兴趣,其中电感耦合的内在可能性和相当大的非谐性带来了巨大优势。然而,对于通量量子比特,在持续电流基中 QND 测量仅在远离通量简并点的地方进行 [ 16 – 20 ]。在简并点处,作为测量变量的持续电流的期望值对于量子比特能量本征态为零。通过将量子比特横向耦合到谐振器,可以测量简并点处的能量本征基,从而测量量子电感 [ 21 – 24 ],或者通过使用基于调制耦合的更复杂方案 [ 25 ]。在任意操作点的通量基中进行测量的能力在量子退火中尤其有趣。如果能够在退火过程中进行测量,而无需首先将量子比特远离简并点,那么将带来巨大的优势,例如,避免退火计划中的淬火,这会限制成功概率 [ 13 , 26 , 27 ],或者仅通过随机相互作用实现量子加速 [ 28 ]。此外,
丰富的氙气观测实验:•研究一种罕见的核衰减实验,称为中性剂量双β衰变•Nexo将在5000千克Xenon-136同位素中搜索中微子双β衰变(2 x 10 28核),从而使少数范围的腐烂范围及其范围的潜在腐烂范围•合并范围的范围范围,•用于从衰减中重建电子的动能的TPC•用于将生成的光信号转换为电信号的硅光化型(sipms)
摘要 - 低温磷化物(INP)高电子动力晶体管(HEMT)低噪声放大器(LNA)用于在4 K处的Qubits读数放大,其中冷却能力有限地暗示活性电路的DC功率是一个必不可少的设计约束。在本文中,在4 K处的超功率(ULP)操作下INP HEMT的RF和噪声性能已被表征。 将INP HEMT的小信号和噪声参数模型提取到1 µW。噪声性能和直流功耗之间的权衡是根据排水电流和排水电压分析的。 制造了4–6 GHz混合低温HEMT LNA专为量子读数而设计的,并针对低于1 MW DC功率的最低噪声进行了优化。 在4 K时测量的LNA的测量性能达到23.1 dB平均增益,平均噪声温度为200 µW DC功率。在本文中,在4 K处的超功率(ULP)操作下INP HEMT的RF和噪声性能已被表征。将INP HEMT的小信号和噪声参数模型提取到1 µW。噪声性能和直流功耗之间的权衡是根据排水电流和排水电压分析的。制造了4–6 GHz混合低温HEMT LNA专为量子读数而设计的,并针对低于1 MW DC功率的最低噪声进行了优化。在4 K时测量的LNA的测量性能达到23.1 dB平均增益,平均噪声温度为200 µW DC功率。
我们提出了一种基于 Xilinx 16 通道射频片上系统 (RFSoC) 设备的超导量子比特控制和测量装置。建议的装置由四部分组成:多个 RFSoC 板、用于跨多个板同步每个数模转换器 (DAC) 和模数转换器 (ADC) 通道的装置、用于调整量子比特频率的低噪声直流电源以及用于远程执行实验的云访问。我们还设计了没有物理混频器的装置。RFSoC 板使用高达第三奈奎斯特区的十六个 DAC 通道直接生成微波脉冲,这些微波脉冲由第五和第九个区域之间的八个 ADC 通道直接采样。由 AIP Publishing 独家出版。https://doi.org/10.1063/5.0081232