我们考虑了读出误差和相干误差(即确定性相位旋转)对表面代码的综合影响。我们使用一种最近开发的数值方法,通过将物理量子位映射到马约拉纳费米子。我们展示了如何在存在读出误差的情况下使用这种方法,在现象学层面上进行处理:完美的投影测量,可能记录错误的结果,以及多次重复的测量。我们发现这种错误组合的阈值,其错误率接近相应非相干错误通道(随机 Pauli-Z 和读出误差)的阈值。使用最坏情况保真度作为逻辑错误的度量,阈值错误率的值为 2.6%。低于阈值,扩大代码会导致逻辑级错误的相干性迅速丧失,但错误率高于相应非相干错误通道的错误率。我们还分别改变了相干和读出误差率,发现表面代码对相干误差比对读出误差更敏感。我们的工作将最近关于完美读出的相干误差的结果扩展到实验上更现实的情况,即读出误差也会发生的情况。
高保真量子门的设计很困难,因为它需要优化两个相互竞争的效应,即最大化门速度和最小化量子比特子空间的泄漏。我们提出了一种深度强化学习算法,该算法使用两个代理同时解决超导传输量子比特的速度和泄漏挑战。第一个代理使用从奖励中学习到的策略构建量子比特同相控制脉冲,以补偿短门时间。在整个构建全长脉冲的中间时间步骤中获得奖励,使代理能够探索较短脉冲的前景。第二个代理确定异相脉冲以针对泄漏。这两个代理都使用来自嘈杂硬件的实时数据进行训练,从而提供适应不可预测的硬件噪声的无模型门设计。为了减少测量分类错误的影响,代理直接在探测量子比特的读出信号上进行训练。我们通过在 IBM 硬件上设计不同持续时间的 X 和 X 的平方根门来展示概念验证实验。仅经过 200 次训练迭代,我们的算法就能构建新的控制脉冲,速度比默认 IBM 门快两倍,同时在状态保真度和泄漏率方面与其性能相当。随着我们自定义控制脉冲的长度增加,它们开始超越默认门。门操作速度和保真度的改进为量子模拟、量子化学和近期及未来量子设备上的其他算法中更高的电路深度开辟了道路。
半导体中的电子自旋是最先进的量子比特实现方式之一,也是利用工业工艺制造的可扩展量子计算机的潜在基础 [1–3]。一台有用的计算机必须纠正计算过程中不可避免地出现的错误,这需要很高的单次量子比特读出保真度 [4]。用于错误检测的全表面码要求在计算机的每个时钟周期内读出大约一半的物理量子比特 [5]。直到最近,自旋量子比特装置中的单次读出只能通过自旋到电荷的转换来实现,由附近的单电子晶体管 (SET) 或量子点接触 (QPC) 电荷传感器检测 [6–9]。然而,如果使用色散读出,硬件会更简单、更小,这利用了双量子点中单重态和三重态自旋态之间的电极化率差异 [10–13]。可以通过与量子点电极之一粘合的射频 (RF) 谐振器监测由此产生的两个量子比特状态之间的电容差异。量子点中的电荷跃迁也会发生类似的色散偏移,这样反射信号有助于调整到所需的电子占据 [14–16]。色散读出的优势在于它不需要单独的电荷传感器,但即使在自旋衰减时间较长的系统中,电容灵敏度通常也不足以进行单次量子比特读出 [17–23]。最近,已经在基于双量子点的系统中展示了色散单次读出 [24–28],但为了提高读出保真度,仍然需要更高的灵敏度。
未来战略性 X 射线天文学任务(如 AXIS [ 1 ])建议将大收集面积反射镜与大型、快速、宽视场成像仪相结合。高帧速率对于最大限度地减少点源的堆积影响以及减轻粒子背景对微弱弥散气体研究的影响至关重要。同时,还必须保持低噪音和出色的软 X 射线能量响应以满足关键的科学目标。除了所需的帧速率外,最先进的 CCD 几乎能够提供此类任务的所有关键性能指标。大型探测器的快速帧速率可带来非常高的有效像素速率。我们斯坦福大学的团队正在与麻省理工学院 (MIT) 和麻省理工学院林肯实验室 (MIT-LL) 合作,通过多管齐下的方法解决这一技术差距。为了实现更高的帧速率,我们正在努力提高单个输出的读出速度和每个 CCD 可以并行运行的输出数量。图 1 显示了适用于 AXIS 焦平面的可能 CCD 模块概念。单个输出的速度提高源于 CCD 输出级优化、通过使用专用 ASIC 减少寄生输出负载以及对视频波形使用数字信号处理。读出 ASIC 还允许我们以较小的占用空间和适中的功耗并行操作多个输出。我们还在研究 MIT-LL 制造的一种新型探测器技术,即单电子灵敏读出(以下简称 SiSeRO),虽然它还不能达到单电子噪声性能,但为实现极低噪声、高速 X 射线探测器提供了一条有希望的途径。
作为光子探测器:• 可用于从深紫外到中红外时间相关单光子计数的最高性能探测器• 在 1550 nm 处已证实的探测效率高达 98%• 时间抖动低于 3 ps• 有效的零暗计数率• 本征光子数分辨率• 阵列中最大计数率超过 1 Gcps
我们在使用定制的互补金属 - 氧化物 - 氧化流程过程制造的绝缘子纳米线上,在硅中报告了双极栅极绘制的量子点。双极性是通过将栅极延伸到固有的硅通道上的高度掺杂的N型和P型末端来实现的。我们利用能够向硅通道提供双极载体储层的能力,以证明使用相同的电极来重新定义,并用相同的电极,带有孔或电子的双量子点。我们使用基于栅极的反射测量法来感知电子和孔双量子点的点间电荷过渡(IDT),从而实现了电子(孔)的最小整合时间为160(100)L s。我们的结果提供了将电子旋转与硅中电孔旋转的长相干时间相结合的机会。
摘要 锁模激光器发出的短脉冲可以产生无背景的原子荧光,因为它允许瞬时偶发散射与随后的原子发射在时间上分离。我们利用这一点将光频和电子搁置离子阱量子比特的量子态检测提高了两个数量级以上。然而,对于原子超精细结构上定义的量子比特的直接检测,短脉冲的大带宽大于超精细分裂,并且重复激发不是量子比特状态选择性的。在这里,我们表明,通过将相干控制技术应用于被查询离子的轨道价电子,可以恢复超精细量子比特的投影量子测量所需的状态分辨率。我们展示了电子波包干涉,即使在存在大量背景激光散射的情况下,也可以使用宽带脉冲读出原始量子比特状态。
挑战: • 尽量减少 DCR 噪声和堆积对时间分辨率的影响 • 应对极高的速率(每通道 2.5 MHz MIP + 5 MHz 低 E 命中) • 处理探测器寿命期间动态范围的变化(因子 4)
虽然单次检测硅自旋量子比特现在已成为实验室常规操作,但大规模量子计算设备中量子误差校正的需求需要量子非破坏 (QND) 实现。与传统方法不同,QND 自旋读出对探测的自旋极化施加的干扰最小,因此可以重复进行以消除测量误差。在这里,我们表明,通过探测与量子比特自旋 Ising 耦合的相邻点中的另一个电子自旋,可以以高度非破坏的方式测量硅中的电子自旋量子比特。高非破坏保真度(平均 99%)使单个自旋状态的读出重复超过 20 次,在 1.2 毫秒内产生高达 95% 的总体平均测量保真度。我们进一步证明,我们的重复 QND 读出协议可以实现预期的高保真度(>99.6%)基态制备。我们基于 QND 的测量和准备,由相同类型的第二个量子位介导,将允许在硅中实现具有电子自旋的多种量子信息协议,而不会损害结构的同质性。