半导体量子点阵列中限制的电子同时具有电荷和自旋自由度。自旋提供了一种可控性好且寿命长的量子比特实现 [1,2]。点阵列中的电荷配置受库仑排斥力的影响,同样的相互作用使电荷传感器能够探测这种配置 [3]。本文表明,库仑排斥力可使初始电荷跃迁诱发后续电荷跃迁,从而引发电子跳跃的级联,就像倒下的多米诺骨牌一样。级联可以沿着量子点阵列在远远超出直接库仑排斥力影响的距离上传输信息。我们证明电子级联可以与泡利自旋阻塞 [4] 相结合,使用远程电荷传感器读出自旋。我们在 1.7 µs 内实现了 > 99.9% 的自旋读出保真度。基于级联的读出技术可以实现密集排列的二维量子点阵列的操作,并在外围放置电荷传感器。这种阵列的高连通性大大提高了量子点系统的量子计算和模拟能力。
摘要 单次读出是可扩展量子信息处理的关键部分。然而,许多具有良好特性的固态量子比特缺乏单次读出能力。一种解决方案是使用重复量子非拆除读出技术,其中量子比特与辅助量子比特相关,然后读出辅助量子比特。因此,读出保真度受到测量对量子比特的反作用的限制。传统上采用阈值法,其中仅使用总光子数来区分量子比特状态,丢弃隐藏在重复读出测量的时间轨迹中的所有反作用信息。这里我们展示通过使用机器学习(ML),人们可以利用时间轨迹数据获得更高的读出保真度。ML 能够识别反作用发生的时间,并正确读出原始状态。由于信息已经被记录(但通常被丢弃),这种保真度的提高不会消耗额外的实验时间,并且可以直接应用于涉及重复读出的测量制备和量子计量应用。
唯一识别单个细胞的分子条形码技术受到条形码测量限制的阻碍。通过测序读取不会保留组织中细胞的空间组织,而成像方法保留了空间结构,但对条形码序列不太敏感。在这里,我们介绍了一种基于图像读取短(20bp)DNA条形码的系统。在这个称为Zombie的系统中,噬菌体RNA聚合酶在固定细胞中转录工程条形码。随后通过荧光原位杂交检测所得RNA。使用竞争匹配和错配探针,Zombie可以准确区分条形码中的单核苷酸差异。该方法允许原位读取密集的组合条形码库和由CRISPR碱基编辑器产生的单碱基突变,而无需在活细胞中表达条形码。Zombie可在多种环境中发挥作用,包括细胞培养、鸡胚和成年小鼠脑组织。通过成像灵敏地读取紧凑和多样化的DNA条形码的能力将促进广泛的条形码和基因组记录策略。
测量假设是量子力学的基础 [1]。要获得有关封闭系统量子态的信息,需要与额外的读出系统(仪表)相互作用。可以设计这种相互作用,使得测得的可观测量是读出过程中运动的积分。这称为量子非破坏(QND)测量。QND 测量使重复测量能够得到相同的结果,最初旨在超越与引力波探测相关的标准量子极限 [2-4]。随着量子信息的发展,人们对 QND 测量方法的兴趣与日俱增,它们在各个方面发挥着重要作用,例如,误差校正 [5] 或通过测量初始化 [6]。超导通量量子比特 [7] 对于量子退火领域 [8-15] 尤其令人感兴趣,其中电感耦合的内在可能性和相当大的非谐性带来了巨大优势。然而,对于通量量子比特,在持续电流基中 QND 测量仅在远离通量简并点的地方进行 [ 16 – 20 ]。在简并点处,作为测量变量的持续电流的期望值对于量子比特能量本征态为零。通过将量子比特横向耦合到谐振器,可以测量简并点处的能量本征基,从而测量量子电感 [ 21 – 24 ],或者通过使用基于调制耦合的更复杂方案 [ 25 ]。在任意操作点的通量基中进行测量的能力在量子退火中尤其有趣。如果能够在退火过程中进行测量,而无需首先将量子比特远离简并点,那么将带来巨大的优势,例如,避免退火计划中的淬火,这会限制成功概率 [ 13 , 26 , 27 ],或者仅通过随机相互作用实现量子加速 [ 28 ]。此外,
尽管超导量子比特为可扩展的量子计算架构提供了潜力,但执行实用算法所需的高保真度读出迄今为止仍未实现。此外,高保真度的实现伴随着较长的测量时间或量子态的破坏。在本论文中,我们通过将两个超低噪声超导放大器集成到单独的色散通量量子比特测量中来解决这些问题。我们首先演示了一个通量量子比特,该量子比特与由电容分流 DC SQUID 形成的 1.294 GHz 非线性振荡器电感耦合。振荡器的频率由量子比特的状态调制,并通过微波反射法检测。微带 SQUID(超导量子干涉装置)放大器 (MSA) 用于提高测量灵敏度,使其高于半导体放大器。在第二个实验中,我们报告了通过共享电感耦合到由交错电容器和蛇形线电感器并联组合形成的准集总元件 5.78 GHz 读出谐振器的通量量子比特的测量结果。近量子极限约瑟夫森参量放大器 (paramp) 可大幅降低系统噪声。我们展示了使用 MSA 在读出谐振器中低至百分之一光子的读出激发水平下提高保真度和降低测量反作用的测量结果,观察到读出可见度提高了 4.5 倍。此外,在读出谐振器中低于十分之一光子的低读出激发水平下,未观察到 T 1 的降低,这可能使连续监测量子比特状态成为可能。使用 paramp,我们展示了具有足够带宽和信噪比的连续高保真读出,以解决通量量子比特中的量子跳跃。这是通过读出实现的,该读出可将读出指针状态分布的误差区分为千分之一以下。再加上能够在 T 1 时间内进行多次连续读出,允许使用预兆来确保初始化到可信状态(例如基态)。这种方法使我们能够消除由于虚假热布居引起的误差,将保真度提高到 93.9%。最后,我们使用预兆引入一个简单、快速的量子比特重置协议,而无需更改系统参数来诱导 Purcell 弛豫。