Loading...
机构名称:
¥ 1.0

测量假设是量子力学的基础 [1]。要获得有关封闭系统量子态的信息,需要与额外的读出系统(仪表)相互作用。可以设计这种相互作用,使得测得的可观测量是读出过程中运动的积分。这称为量子非破坏(QND)测量。QND 测量使重复测量能够得到相同的结果,最初旨在超越与引力波探测相关的标准量子极限 [2-4]。随着量子信息的发展,人们对 QND 测量方法的兴趣与日俱增,它们在各个方面发挥着重要作用,例如,误差校正 [5] 或通过测量初始化 [6]。超导通量量子比特 [7] 对于量子退火领域 [8-15] 尤其令人感兴趣,其中电感耦合的内在可能性和相当大的非谐性带来了巨大优势。然而,对于通量量子比特,在持续电流基中 QND 测量仅在远离通量简并点的地方进行 [ 16 – 20 ]。在简并点处,作为测量变量的持续电流的期望值对于量子比特能量本征态为零。通过将量子比特横向耦合到谐振器,可以测量简并点处的能量本征基,从而测量量子电感 [ 21 – 24 ],或者通过使用基于调制耦合的更复杂方案 [ 25 ]。在任意操作点的通量基中进行测量的能力在量子退火中尤其有趣。如果能够在退火过程中进行测量,而无需首先将量子比特远离简并点,那么将带来巨大的优势,例如,避免退火计划中的淬火,这会限制成功概率 [ 13 , 26 , 27 ],或者仅通过随机相互作用实现量子加速 [ 28 ]。此外,

在任意偏置点的持续电流基础上的通量量子比特读出

在任意偏置点的持续电流基础上的通量量子比特读出PDF文件第1页

在任意偏置点的持续电流基础上的通量量子比特读出PDF文件第2页

在任意偏置点的持续电流基础上的通量量子比特读出PDF文件第3页

在任意偏置点的持续电流基础上的通量量子比特读出PDF文件第4页

在任意偏置点的持续电流基础上的通量量子比特读出PDF文件第5页

相关文件推荐

2022 年
¥2.0
2024 年
¥8.0
1900 年
¥1.0
2024 年
¥1.0