ISSN 1330-3651(印刷版),ISSN 1848-6339(在线版) https://doi.org/10.17559/TV-20240123001285 原创科学论文 基于多媒体数据分析和人工智能的智能体育教学跟踪系统 徐嘉辉*,齐大陆,刘爽 摘要:近年来,体育环境已经意识到身体和心理特征的重要性。体育工作人员、运动员和教练员已经表明,新的理论和治疗方法可用于增强心理。个人社会生活中的基本需求是城市公共体育。本文在均等化公共服务的基础上,提供了均等化公共体育的城市设施。国家一致的规则可以提供城市公共体育产品和服务,这些产品和服务对公民来说是基本的,考虑到他们的生计和娱乐需求。本文提出利用语义多层次结构方程模型(SMSEM)来评估城市公共体育服务的运动心理需求,目的是紧密围绕群众的体育需求,提高政府城市公共体育服务供给的质量和效率,推动城市体育休闲城市建设,让更多人享受城市公共体育,保障人民群众的基本体育权利。积极心理学的成长具有广泛的理论和应用领域,丰富了新的体育心理学理论和应用。心理监测与体育锻炼的关系最密切的是竞技体育领域。心理指导正朝着系统化、专业化的方向发展。在未来的应用中,从体育心理学中获得的成果更具适用性。关键词:人工智能;多媒体数据分析;语义;运动心理;城市公共体育1引言运动员的运动表现由心理、身体和社会因素来评价[1]。教练员认为,通过提高运动员的心理能力可以提高运动员的运动成绩[2]。心理干预对游泳、足球、垒球、滑冰、高尔夫和网球等多项运动的运动员表现有积极影响 [3]。高水平表现研究比较了不同的运动员,报告了成功运动员的理想心理特征,包括:焦虑的自我调节、高度集中、高度自信、焦虑控制、积极的运动关注和决心以及参与度 [4]。研究表明,运动员具有获得成功的敏锐心理能力 [5]。心理因素的相似性,多维结构和运动员表现的提高与心理技能和心理韧性密切相关[6],即“自然或既定的心理优势”。一般来说,体育运动的多项要求都要求运动员比对手表现得更好。要比对手更加稳定、一致和有控制力[7]。这些运动员除了发展心理韧性外,还采用了心理技能来保持这种心理韧性[8]。运动员可以学习特定技能如何改善心理稳定性的发展和维持[9]。体育心理学家已经启动了与体育运动有关的心理能力的心理测量特性,这些特性已经确定并测量了运动员的心理状态,以方便进一步咨询[10]。此外,问卷还测量了特定领域的因素,例如焦虑和PSIS(运动心理技能清单)团队因素、ACSI-28(运动应对技能量表-28)、APSI(运动心理技能清单)应对技能以及在绩效策略测试中的表现改进[11]。对运动员的心理支持主要包括以下几个方面:
在用于液晶显示的背光系统中,缺乏极化性能的传统红色,绿色和蓝色(RGB)光源可能会导致通过偏振层的光学损失高达50%。为了解决这一效率并优化能源利用,本研究提出了一种用于RGB极化排放的高性能装置。该设备采用了具有固有极化能力的半极蓝色的阵列,并与绿色发射CSPBBR 3纳米棒的机械拉伸膜结合使用,并发射红色发射CSPBI 3 -CS 4 PBI 6 PBI 6混合纳米晶体。聚合物膜中的CSPBBR 3纳米棒提供了内在的极化发射,而稳定的CSPBI 3 -CS 4 PBI 6 PBI 6混合纳米晶体形成的对齐的结构则有助于实质性各向异性排放,这是由于它们的高dieLec-Tric-tric常数。所得设备的RGB极化度分别为0.26、0.48和0.38,并展示了宽色范围,达到了NTSC标准的137.2%和REC的102.5%。2020标准。当使用C-平面LED进行激发的设备时,当前方法将通过偏光层传播的光强度增加了73.6%。含有RGB组件的极化设备的这种新颖的制造方法对推进下一代展示技术具有相当大的希望。
在这篇系统的文献综述中,我们研究了现有的研究,这些研究预测了使用人工智能和机器学习的实现波动性和隐含波动指数。我们调查了文献,以发现与传统计量经济学模型相比,所提出的方法是否提供了较高的预测,可解释的AI的应用如何广泛,并概述了潜在的进一步研究领域。通常,我们发现AI和ML方法对波动性预测的疗效是高度前景的,通常比其计量经济学的结果提供了比较或更好的结果。使用内存的神经网络,例如长期术语内存和门控复发单元,始终排名最高的模型。但是,传统的计量经济学模型仍然高度相关,通常产生的结果与更先进的ML和AI模型相似。鉴于合奏方法的成功,研究的一个有希望的领域是使用混合模型,结合了机器学习和计量经济学模型。尽管对许多机器学习模型的常见批评都是黑盒本质的,但我们发现,很少有论文应用XAI来分析和支持其经验结果。因此,我们建议研究人员更努力地在将来的工作中雇用XAI。同样,我们看到了概率机器学习应用的潜力,可以有效地量化机器学习模型的波动性预测的不确定性。
人工智能作为将人类认知功能特性本体化的一种手段。系统 1 和系统 2 的神经关联也得到了研究 [6]。然而,最近这种双系统模型因缺乏精确性和概念清晰度而受到批评 [7],导致了重大误解 [8] [9],并掩盖了心理过程的动态复杂性 [10]。大部分批评源于对对齐假设的争议。对齐假设是指认知功能必须与系统 1 或系统 2 对齐的说法 [9]。从人工智能的角度来看,对齐假设会很方便,然而,这一假设被批评为过于简单,一些双系统理论家并不认可它,而是称之为“典型关联”而不是“定义特征”[8]。需要更具体定义的研究人员已经制定了系统 1 和系统 2 的更详细定义。例如,普鲁斯特 [11] 认为,需要更精确的计算定义来理解系统 1 和系统 2 在元认知(使用更高级别或元级别的过程来控制认知)中的作用。普鲁斯特根据其独特的信息类型来定义这些系统,其中系统 1 元认知是隐性的、非符号性的和非概念性的,而系统 2 元认知是显性的、符号性的和概念性的。
可编程量子仿真的新生平台可在近似隔离的系统中前所未有的访问对远程平衡量子多体动力学的新制度的访问。在这里,实现对量子多体纠缠的精确控制是量子传感和计算的重要任务。广泛的理论工作表明,这些能力可以实现具有拓扑的方法和临界现象,这些阶段和关键现象表现出了拓扑合理的方法,可以创建,保护和操纵量子纠缠,从而对大量的错误进行自我纠正。迄今为止,实验实现已局限于经典(非输入)对称性的OR- 1-5。在这项工作中,我们证明了一个新兴的动态对称性受保护的拓扑阶段(EDSPT)6,在Quastinuum系统模型H1诱捕的ION量子处理器7中的十171 Yb +超固量量子的准驱动阵列中。此阶段表现出动态保护的边缘量子位,免受控制误差,串扰和流浪场。至关重要的是,这种边缘保护纯粹依赖于紧急的动力对称性,这些动力对称性绝对稳定在通用相干扰动中。此属性对于准二驱动的系统很特别:正如我们所证明的那样,定期驱动的Qubit-Array的类似边状态容易受到对称性破坏错误的影响,并迅速解压缩。我们的工作为实施更复杂的动力学拓扑订单8,9铺平了道路,这将使量子信息的错误操纵。mbl可以保护“热”,密集且驱动强的物质中的长寿命量子相干动力学。提供理解和分类新型的普遍动力学现象(稳定阶段和关键现象的动态类似物)可能会在孤立的量子多体系统中引起的基本科学挑战。早期研究已经对热化和混乱10的量子机械基础产生了深入的见解,并且已经证明了如何通过多体定位(MBL)通过人工随机性和混乱来预防热化。它可以启用具有固有动力学量子相的新类别,其特性在静态热平衡中从根本上被禁止,例如动态对称性破坏和拓扑8。从实际的角度来看,通用和量子相干的动力学行为诱人地提供了错误的弹性方法来创建,保护和操纵量子多体纠缠 - Quantum Compuce的驱动力。要执行量子计算,人们面临着隔离Qubits以保持其连贯性的愿望与强烈相互作用量子的愿望之间的权衡,以执行计算。即使是从环境反向分解的完美隔离中,由于流浪场,栅极错误校准,跨言论等,强烈的Qubit间耦合不可避免地会导致残留,连贯的误差,从而破坏了计算。也许在违反直觉上,相干错误可能比不连贯的错误更具破坏性。尤其是,与不连贯的误差相比,相干误差的n门引起的不忠性可以随着〜n 2ϵ2的形式增长。尽管对算法性能产生了巨大的有害影响,但连贯的错误仍在挑战。标准的随机台上标记过程,例如,将相干和不相干的误差组合到单个有效的每门误差中,这可以显着高估与计算相关的结构性电路的准确性。采用动态脱钩脉冲序列(DDS)是一种时间悠久的方法,可以减轻与不受控制的静态流浪场相关的某些类型的相干误差。然而,对于使用全局单旋旋链控制的传统自旋回波协议,脱钩脉冲中大小的略微缺陷会累积并破坏时间〜1 /ϵ的分离。相比之下,在理论上,动态阶段8的最新工作已经预测,多自旋相互作用的局部控制可以实现自然校正的DDS,这些DDS固有地对抗大型相干错误。这些方案的鲁棒性来自动力学的巨大量化拓扑不变。
b'我们提出了一系列量子算法,用于计算各种量子熵和距离,包括冯·诺依曼熵、量子 R\xc2\xb4enyi 熵、迹距离和 \xef\xac\x81delity。所提出的算法在低秩情况下的表现明显优于最知名的(甚至是量子的)算法,其中一些算法实现了指数级加速。特别是,对于秩为 r 的 N 维量子态,我们提出的用于计算冯·诺依曼熵、迹距离和 \xef\xac\x81delity(加性误差 \xce\xb5 内)的量子算法的时间复杂度为 \xcb\x9c O r 2 /\xce\xb5 2 、 \xcb\x9c O r 5 /\xce\xb5 6 和 \xcb\x9c O r 6 。 5 /\xce\xb5 7 . 5 1 。相比之下,已知的冯·诺依曼熵和迹距离算法需要量子时间复杂度为 \xe2\x84\xa6( N ) [AISW19,GL20,GHS21],而最著名的 \xef\xac\x81delity 算法需要 \xcb\x9c O r 21 . 5 /\xce\xb5 23 . 5 [WZC + 21]。我们的量子算法的关键思想是将块编码从先前工作中的幺正算子扩展到量子态(即密度算子)。它是通过开发几种方便的技术来操纵量子态并从中提取信息来实现的。特别是,我们基于强大的量子奇异值变换(QSVT)[GSLW19],引入了一种用于密度算子及其(非整数)正幂的特征值变换的新技术。我们的技术相对于现有方法的优势在于,不需要对密度算子进行任何限制;与之形成鲜明对比的是,以前的方法通常需要密度算子的最小非零特征值的下限。此外,我们还提供了一些独立感兴趣的技术,用于(次规范化)密度算子的迹估计、线性组合和特征值阈值投影仪,我们相信这些技术在其他量子算法中会很有用。'
简介 几十年来,居住在美国的无证移民一直是经济的重要推动力,但往往被忽视。这些居民全身心投入创造财富并为美国社会福祉做出贡献的经济活动。他们在美国经济的建筑和农业部门以及娱乐、艺术、休闲、住宿和食品服务行业中发挥着特别重要的作用。无证移民也经常是企业主,几乎都是纳税人,向地方、州和联邦政府缴纳收入和销售税。然而,许多移民辩论都集中在为这些人提供公共服务的成本上,而忽视了他们带来的利益。一些研究已经表明,无证移民产生的经济效益大于他们对整个社会的成本。研究还表明,驱逐无证移民将对美国经济产生负面影响。1 甚至限制他们参与金融部门等关键经济活动也会限制他们的经济贡献。例如,无证移民经济潜力的一个主要限制因素是他们无法进入银行系统获得信贷和抵押贷款。获得信贷将为他们提供财务稳定,以进一步增加自己的财富以及国家的财富,因为他们可以制定财务计划来购买房屋、车辆或支付子女的高等教育费用。利用这些资源将进一步扩大美国经济,并在中长期内促进经济增长。通过限制这些人群在经济和金融方面的能力,我们也限制了美国经济的进一步增长。本研究的目的是估计如果无证移民能够获得信贷和美国银行系统,他们将对金融系统和整个经济产生什么样的经济影响。本文还将分析他们进入医疗保健系统和住房市场的影响,并预测这些影响对美国整体经济的影响。计算这些影响具有双重紧迫性。首先,迫切需要就居住在美国的 1070 万非法移民的命运展开更加知情的政治辩论。其次,鉴于美国面临着劳动力日益老龄化和人口增长停滞的问题,该国将需要移民留在美国工作,甚至可能需要在未来增加移民数量。驱逐非法移民(他们往往是年轻、经济活跃的纳税人,有潜力创造新的就业和企业,并产生新的产品和技术)可能会适得其反。本文进一步假设,非法移民合法化(临时或永久)并将其纳入银行系统、医疗保健系统和住房市场将对经济产生积极的连锁反应,从而为非法移民和整个美国带来“双赢”的结果。因此,本文的核心问题是“美国经济是否会因非法移民进入银行、医疗保健和住房部门而受益?”
技术将继续以更快的速度发展,包括物联网*,这使一切都可以连接到互联网;大数据,分析和生成大量数据的新价值;以及AI,自动驾驶和EV,这得益于高级高速信息处理技术。具有新的汽车行业的一种新的社会工业结构即将来临。我们在全球范围内与领域的客户互动,例如非易失性内存,3D-IC,电信设备,传感器和光电设备,以开发创新的真空技术,并帮助客户实现开发和/或扩展生产。
国防部内外的其他航空组织通过不断改进维护流程(陆军尚未达到的程度)成功应对了类似的挑战。本研究考察了多个此类案例,以确定现有飞机机队是否有可能获得显著收益。接下来评估的是陆军航空兵目前的设备和实践从此类修订中受益的可能性。最终的答案是,目前航空兵部队存在未实现的维护效率,这可能是实现当前和未来陆军任务所要求的战备状态的最佳途径
国防部内外的其他航空组织通过不断改进维护流程(陆军尚未达到的程度)成功应对了类似的挑战。本研究考察了多个此类案例,以确定现有飞机机队是否有可能获得显著收益。接下来评估的是陆军航空兵目前的设备和实践从此类修订中受益的可能性。最终的答案是,目前航空兵部队存在未实现的维护效率,这可能是实现当前和未来陆军任务所要求的战备状态的最佳途径