Loading...
机构名称:
¥ 1.0

可编程量子仿真的新生平台可在近似隔离的系统中前所未有的访问对远程平衡量子多体动力学的新制度的访问。在这里,实现对量子多体纠缠的精确控制是量子传感和计算的重要任务。广泛的理论工作表明,这些能力可以实现具有拓扑的方法和临界现象,这些阶段和关键现象表现出了拓扑合理的方法,可以创建,保护和操纵量子纠缠,从而对大量的错误进行自我纠正。迄今为止,实验实现已局限于经典(非输入)对称性的OR- 1-5。在这项工作中,我们证明了一个新兴的动态对称性受保护的拓扑阶段(EDSPT)6,在Quastinuum系统模型H1诱捕的ION量子处理器7中的十171 Yb +超固量量子的准驱动阵列中。此阶段表现出动态保护的边缘量子位,免受控制误差,串扰和流浪场。至关重要的是,这种边缘保护纯粹依赖于紧急的动力对称性,这些动力对称性绝对稳定在通用相干扰动中。此属性对于准二驱动的系统很特别:正如我们所证明的那样,定期驱动的Qubit-Array的类似边状态容易受到对称性破坏错误的影响,并迅速解压缩。我们的工作为实施更复杂的动力学拓扑订单8,9铺平了道路,这将使量子信息的错误操纵。mbl可以保护“热”,密集且驱动强的物质中的长寿命量子相干动力学。提供理解和分类新型的普遍动力学现象(稳定阶段和关键现象的动态类似物)可能会在孤立的量子多体系统中引起的基本科学挑战。早期研究已经对热化和混乱10的量子机械基础产生了深入的见解,并且已经证明了如何通过多体定位(MBL)通过人工随机性和混乱来预防热化。它可以启用具有固有动力学量子相的新类别,其特性在静态热平衡中从根本上被禁止,例如动态对称性破坏和拓扑8。从实际的角度来看,通用和量子相干的动力学行为诱人地提供了错误的弹性方法来创建,保护和操纵量子多体纠缠 - Quantum Compuce的驱动力。要执行量子计算,人们面临着隔离Qubits以保持其连贯性的愿望与强烈相互作用量子的愿望之间的权衡,以执行计算。即使是从环境反向分解的完美隔离中,由于流浪场,栅极错误校准,跨言论等,强烈的Qubit间耦合不可避免地会导致残留,连贯的误差,从而破坏了计算。也许在违反直觉上,相干错误可能比不连贯的错误更具破坏性。尤其是,与不连贯的误差相比,相干误差的n门引起的不忠性可以随着〜n 2ϵ2的形式增长。尽管对算法性能产生了巨大的有害影响,但连贯的错误仍在挑战。标准的随机台上标记过程,例如,将相干和不相干的误差组合到单个有效的每门误差中,这可以显着高估与计算相关的结构性电路的准确性。采用动态脱钩脉冲序列(DDS)是一种时间悠久的方法,可以减轻与不受控制的静态流浪场相关的某些类型的相干误差。然而,对于使用全局单旋旋链控制的传统自旋回波协议,脱钩脉冲中大小的略微缺陷会累积并破坏时间〜1 /ϵ的分离。相比之下,在理论上,动态阶段8的最新工作已经预测,多自旋相互作用的局部控制可以实现自然校正的DDS,这些DDS固有地对抗大型相干错误。这些方案的鲁棒性来自动力学的巨大量化拓扑不变。

在被困的离子量子模拟器中实现的动态拓扑阶段

在被困的离子量子模拟器中实现的动态拓扑阶段PDF文件第1页

在被困的离子量子模拟器中实现的动态拓扑阶段PDF文件第2页

在被困的离子量子模拟器中实现的动态拓扑阶段PDF文件第3页

在被困的离子量子模拟器中实现的动态拓扑阶段PDF文件第4页

在被困的离子量子模拟器中实现的动态拓扑阶段PDF文件第5页

相关文件推荐