计算机是一种以多种不同方式彻底改变我们日常生活的设备。尽管处理能力已大大提高,但以基于 0 和 1 的二进制格式存储信息的基本原理是一样的。与这种传统的信息处理方式相比,描述计算机的更通用的方式可能更强大。量子计算机就是这样一种非经典选择,其中信息以量子二进制数字(量子位)存储。事实上,已经发现算法在量子计算机上的运行速度比任何已知的经典设备算法都要快得多。例如,使用 Shor 算法,可以在量子计算机上几分钟内分解一个大素数,而在最好的经典计算机上则需要数千年。实现这种复杂的算法需要具有数千到数百万个量子位的量子计算机。尽管量子计算机已被证明在原则上可行,但当今的设备仅限于执行数十个量子位的量子操作。在实现足够大且有用的量子计算机的道路上,有几个困难需要克服。在这项工作中,我们使用基于捕获原子离子的量子信息处理器研究了两个重要的未解决的问题。第一个未解决的里程碑是作用于许多量子比特的量子操作的表征。早期的技术需要的资源随量子比特数呈指数级增长,因此不适合在大型量子计算机上实际实现。我们提出了一种技术,使我们能够在很短的时间内严格表征量子过程。我们证明了我们的方法(称为循环基准测试)不依赖于量子比特数,因此是未来开发大型量子计算机的重要工具。第二个未解决的里程碑是减轻和纠正错误。在现实世界的设备中,可能影响计算的噪声是不可避免的。幸运的是,已经开发出使量子计算机能够抵抗任何类型的噪声的技术。检测和纠正错误的一种方法是将信息分布在多个量子比特上。在这里,我们提出了一种技术,使我们能够分割和拼接排列在二维晶格上的量子比特块。这种称为“Lattice Surgery”的方法使我们能够处理纠错的量子位,同时需要比以前更少的计算步骤。
主要关键词