摘要 通过大肠杆菌内核的损坏DNA的特征(单链断裂)III,IV和VI以及通过噬菌体T4 UV鼻核ASE进行了研究,已通过E coli dna Polymerase I(DNA Polymerase I(DNA coletidylyclase ind of DNA)的dna-nicks Incriv dna-dna-dna in nicks dna complose se a聚合酶的末端,而核酸内切酶III或通过T4紫外线溶液引入脱固定的DNA的痕迹却没有。 该结果表明核酸内切酶IV尼古克在源自核酸位点的5'侧降低了DNA,而核酸内切酶VI也是如此,而核酸内切酶III具有不同的切口机制。 t4紫外核酸内切酶还具有apur- inic核酸内切酶活性,该活性在聚合酶的脱尿中产生了脱尿的DNA,对聚合酶的启动活性低。 通过与核酸内切酶VI的额外孵育,可以增强用核酸内切酶III或T4 UV内核酸酶划分的DNA的启动活性,并在较小程度上与核酸内切酶IV孵育。 这些结果表明,核酸内切酶III和T4 UV核酸内切酶(分别作用于撤离和放射性的DNA)产生含有3末端的载膜/阿哌丁汀位点的划痕,并且这些位点并未通过DNA Polymase I. divne divne的3' -5'活性来[' -5' - 5' - 5' 然而,核酸内切酶IV或VI显然可以去除未经零件位点的5'侧的末端肾上腺素/apyrimidinic位点以及裂解。 这些结果表明,在DNA中肾上腺素/III,IV和VI的连核III,IV和VI的作用。通过大肠杆菌内核的损坏DNA的特征(单链断裂)III,IV和VI以及通过噬菌体T4 UV鼻核ASE进行了研究,已通过E coli dna Polymerase I(DNA Polymerase I(DNA coletidylyclase ind of DNA)的dna-nicks Incriv dna-dna-dna in nicks dna complose se a聚合酶的末端,而核酸内切酶III或通过T4紫外线溶液引入脱固定的DNA的痕迹却没有。 该结果表明核酸内切酶IV尼古克在源自核酸位点的5'侧降低了DNA,而核酸内切酶VI也是如此,而核酸内切酶III具有不同的切口机制。 t4紫外核酸内切酶还具有apur- inic核酸内切酶活性,该活性在聚合酶的脱尿中产生了脱尿的DNA,对聚合酶的启动活性低。 通过与核酸内切酶VI的额外孵育,可以增强用核酸内切酶III或T4 UV内核酸酶划分的DNA的启动活性,并在较小程度上与核酸内切酶IV孵育。 这些结果表明,核酸内切酶III和T4 UV核酸内切酶(分别作用于撤离和放射性的DNA)产生含有3末端的载膜/阿哌丁汀位点的划痕,并且这些位点并未通过DNA Polymase I. divne divne的3' -5'活性来[' -5' - 5' - 5' 然而,核酸内切酶IV或VI显然可以去除未经零件位点的5'侧的末端肾上腺素/apyrimidinic位点以及裂解。 这些结果表明,在DNA中肾上腺素/III,IV和VI的连核III,IV和VI的作用。通过大肠杆菌内核的损坏DNA的特征(单链断裂)III,IV和VI以及通过噬菌体T4 UV鼻核ASE进行了研究,已通过E coli dna Polymerase I(DNA Polymerase I(DNA coletidylyclase ind of DNA)的dna-nicks Incriv dna-dna-dna in nicks dna complose se a聚合酶的末端,而核酸内切酶III或通过T4紫外线溶液引入脱固定的DNA的痕迹却没有。 该结果表明核酸内切酶IV尼古克在源自核酸位点的5'侧降低了DNA,而核酸内切酶VI也是如此,而核酸内切酶III具有不同的切口机制。 t4紫外核酸内切酶还具有apur- inic核酸内切酶活性,该活性在聚合酶的脱尿中产生了脱尿的DNA,对聚合酶的启动活性低。 通过与核酸内切酶VI的额外孵育,可以增强用核酸内切酶III或T4 UV内核酸酶划分的DNA的启动活性,并在较小程度上与核酸内切酶IV孵育。 这些结果表明,核酸内切酶III和T4 UV核酸内切酶(分别作用于撤离和放射性的DNA)产生含有3末端的载膜/阿哌丁汀位点的划痕,并且这些位点并未通过DNA Polymase I. divne divne的3' -5'活性来[' -5' - 5' - 5' 然而,核酸内切酶IV或VI显然可以去除未经零件位点的5'侧的末端肾上腺素/apyrimidinic位点以及裂解。 这些结果表明,在DNA中肾上腺素/III,IV和VI的连核III,IV和VI的作用。通过大肠杆菌内核的损坏DNA的特征(单链断裂)III,IV和VI以及通过噬菌体T4 UV鼻核ASE进行了研究,已通过E coli dna Polymerase I(DNA Polymerase I(DNA coletidylyclase ind of DNA)的dna-nicks Incriv dna-dna-dna in nicks dna complose se a聚合酶的末端,而核酸内切酶III或通过T4紫外线溶液引入脱固定的DNA的痕迹却没有。该结果表明核酸内切酶IV尼古克在源自核酸位点的5'侧降低了DNA,而核酸内切酶VI也是如此,而核酸内切酶III具有不同的切口机制。t4紫外核酸内切酶还具有apur- inic核酸内切酶活性,该活性在聚合酶的脱尿中产生了脱尿的DNA,对聚合酶的启动活性低。通过与核酸内切酶VI的额外孵育,可以增强用核酸内切酶III或T4 UV内核酸酶划分的DNA的启动活性,并在较小程度上与核酸内切酶IV孵育。这些结果表明,核酸内切酶III和T4 UV核酸内切酶(分别作用于撤离和放射性的DNA)产生含有3末端的载膜/阿哌丁汀位点的划痕,并且这些位点并未通过DNA Polymase I. divne divne的3' -5'活性来[' -5' - 5' - 5'然而,核酸内切酶IV或VI显然可以去除未经零件位点的5'侧的末端肾上腺素/apyrimidinic位点以及裂解。这些结果表明,在DNA中肾上腺素/III,IV和VI的连核III,IV和VI的作用。我们使用T4 UV核酸内切酶的结果表明,T4紫外核酸内切酶对辐照DNA的切口涉及在嘧啶二聚体的5'一半处的糖基键的裂解,又涉及磷酸二二聚体的裂解,又是磷酸二酯键的裂解,最初连接了两个核位核位核苷酸的两个核苷酸。他们还暗示糖基键在磷酸酯键之前切割。
Higuchi Satoshi (Orcid ID: 0000-0002-7914-8256) Guideline-directed medical treatment in patients undergoing transcatheter edge-to-edge repair for secondary mitral regurgitation Satoshi Higuchi, MD, PhD, 1 Mathias Orban, MD, 1,2 Marianna Adamo, MD 3 , Cristina Giannini, MD 4 , Bruno Melica,医学博士5,妮可·卡拉姆(Melica),医学博士Nicole Karam,医学博士6,医学博士7 Daniel Kalbacher,医学博士,8,9 Benedikt Koell,MD,8 Lukas,Stolz,Stolz,Stolz,MD 1,Daniel Braun,MD,MD,MHBA 1,2 1,2迈克尔·诺斯(Michael Neuss) Ferreira,医学博士5,医学博士Holger Thiele,医学博士13号,马里兰州Stephan Baldus 13号,Ralph Stephan von Bardeleben,MD,MD 11,MD,1,2 STEFFEN MASSBERG,1,2 Stephan Windecker,医学博士,医学博士,MD,7 Philipp Lurz,7 Philipp Lurz,MD,Phd,Phd,Phd,Phd,13 Anna Sonia petronio,raham,Mden fornam lindef byann linden linden ,, 15,Marco Metra,MD 3,JörgHausleiter,MD 1,2,*; EUROSMR调查人员
CRISPR-CAS诱导的同源指导修复(HDR)可以通过外源供体模板安装广泛的精确基因组修饰。然而,HDR在人类细胞中的应用通常受到差异差的效率阻碍,这是由于偏爱易于容易产生的途径而产生短插入和缺失的途径。在这里,我们描述了递归编辑,这是一种HDR改进策略,该策略有选择地重新制定不希望的Indel结果,以创造更多的机会来生产所需的HDR等位基因。我们介绍了一个名为Retarget的软件工具,该工具可以使递归编辑实验的合理设计。在单个编辑反应中,使用重编设计的指南RNA,递归编辑可以同时提高HDR效率并减少不希望的indels。我们还利用重新定位来生成数据库,以特别有效地递归编辑位点,以内源性标记蛋白质并靶向致病性突变。递归编辑构成了一种易于使用的方法,而没有潜在的细胞操作,也很少增加实验负担。
两种 OGG1 调节剂均减少了 KBrO 3 诱导的 AP 位点(图 2G),我们发现 TH5487 的 DNA 链断裂(γH2AX)更少(图 2H),表明 OGG1 糖基化酶活性受损会导致 AP 位点数量减少。相反,我们发现 TH10785 的 DNA 链断裂(γH2AX)更多(图 2H),证实 TH10785 在细胞中的催化活性会导致 DNA 链断裂。总之,这些结果表明 TH10785 激活的 OGG1 具有新的细胞作用,即比 8-oxoG 更倾向于 AP 位点。接下来,我们测试了 TH10785 在细胞中诱导 β,δ 消除的程度。我们假设同时刺激 β,δ-消除和阻断 PNKP1 活性应会使系统因未修复的 DNA 单链断裂而超载(图 1A)。因此,在单独暴露于 OGG1 抑制剂或激活剂(图 3A、图 S26)和类似化合物(表 S6 和图 3B)或与 PNKP1i 联合使用的 U2OS 细胞中,使用标记物 γH2AX 和 53BP1 通过 IF 测量 DDR。我们发现 PNKP1 抑制剂只有与引起体外 β,δ-裂解酶活性的 OGG1 激活剂联合使用时才会诱导强 DDR。为了评估这种因果关系,我们使用 RNA 测序监测转录变化,发现 PNKP1i 与 TH10785 联合使用(而非单独使用)会诱导识别和修复 DNA 双链断裂的关键参与者的转录显着上调(图 3C)。此外,TH10785 与 PNKP1 抑制相结合时细胞活力降低,但 TH5487 则不会降低(图 3D 和 3E)。这些结果表明,TH10785 激活 OGG1 β,δ-裂解酶活性在体外和细胞内均会发生,并且 PNKP1 对于避免 DNA 损伤的积累和随之而来的细胞死亡至关重要。总之,我们提出了一种新概念,即通过酶导向的小分子催化剂诱导 OGG1 β,δ-裂解酶活性,结合到酶的活性位点(图 3F、S27 和 S28)。TH10785 的存在引起的新催化功能更倾向于 AP 位点而不是 8-oxoG,并在体外和细胞内产生 PNKP1 依赖性。改善或重新规划处理氧化性DNA损伤的修复途径对许多疾病(如炎症、癌症、阿尔茨海默氏症或衰老)具有重要意义,这里概述的概念允许以新的方式控制和重新规划修复途径(24)。
摘要E. COIL K-1中的基本不匹配校正过程称为非常短的贴片(VSP)修复,将t:G不匹配到C:G时在某些序列上下文中发现时。在DNA中胞质甲基化的背景下,两个底物不匹配(5'-ctwgg/3'-ggw'cc; w = a或t)出现,并减少5-甲基环胞嘧啶脱氨酸对胸腺氨酸的诱变作用。然而,VSP修复也已知可以修复T:G不匹配,而与5-甲基环胞嘧啶脱氨基(示例-CTAG/GGT- C)不会产生。在这些情况下,如果原始基对为t:a,VSP修复将导致t向C转换。我们已经对大肠杆菌序列数据库进行了马尔可夫链分析,以确定后者类别的修复是否改变了相关的四核苷酸的丰度。结果与预测VSP修复会倾向于耗尽包含序列的“ t”的基因组(示例-CTAG),同时富集了它的相应“ C”含量序列(CCAG)。此外,它们为肠道细菌基因组中的限制酶位点的已知稀缺性提供了解释,并将VSP修复鉴定为塑造细菌基因组序列组成的力量。
dnaprotein交叉链接(DPC)是非常常见的DNA病变,会干扰所有DNA交易,包括复制和转录。受损DNAPROTEIN交联修复(DPCR)的后果很严重。在细胞水平上,DPCR受损会导致双链断裂,基因组不稳定性和/或细胞死亡的形成,而在有机体水平上,DPCR缺乏与癌症,衰老和神经变性有关。诱导DPC用于医学治疗许多癌症,并了解有机体水平的修复可能会为开发新药和联合疗法与当前使用的化学治疗剂的开发提供动力。We use zebrafish (Danio rerio), an established vertebrate model to study cancer, neurodegenerative and cardiovascular diseases, and CRISPR/Cas gene editing to knockout or mutate genes of interest in order to study the interplay of DPCR factors and subpathways including proteolysis, and tyrosylDNA phosphodiesterasedependent repair at the biochemical and cellular level.i将介绍我们最近的发现,从CRISPRCAS系统产生的三种新的斑马鱼菌株:催化突变体和参与DPCR的ACRC蛋白酶的C端突变体,以及具有无活性DPCR因子的转基因菌株,无效的DPCR因子,酪液NA磷酸二酯酶1(TDP1)。我们发现ACRC是脊椎动物发育中的必不可少的蛋白酶,因为催化突变会导致早期的胚胎致死性。通过将ACRC(WT)mRNA构建体注射到突变胚胎中,我们能够种植转基因线并执行DPCR分析。我们发现ACRC是具有许多细胞底物的DPCR蛋白酶,SPRTT结构域对于修复至关重要,而本质上无序的区域是可分配的。我们还表明,TDP1是在有机体水平分辨出拓扑异构酶1和HistonedPC所必需的,并且我们进一步表征了一种新型的TDP1介导的修复途径,用于HistonedPC修复。
Prime 编辑 (PE) 是一种强大的基因组工程方法,能够将碱基替换、插入和删除引入任何给定的基因组位点。然而,PE 的效率差异很大,不仅取决于目标基因组区域,还取决于编辑细胞的遗传背景。在这里,为了确定哪些细胞因素会影响 PE 效率,我们针对 32 个 DNA 修复因子进行了有针对性的遗传筛选,涵盖了所有已报道的修复途径。我们表明,根据细胞系和编辑类型,错配修复 (MMR) 的消融可使 PE 效率提高 2-17 倍,涵盖多种人类细胞系、编辑类型和基因组位点。关键 MMR 因子 MLH1 和 MSH2 在 PE 位点的积累表明 MMR 直接参与 PE 控制。我们的研究结果为 PE 机制提供了新的见解,并提出了如何优化其效率。
李斯特氏病是由细菌单核细胞增生菌引起的,是一种严重的食源性疾病,具有很大的公共卫生影响,尤其是由于其在高危人群中的严重结果。弱势群体 - 包括老年人,孕妇,新生儿和免疫功能低下的个体 - 特别容易受到这种疾病的侵入性形式,例如菌血症和脑膜炎。这些条件与高病态率率有关,强调了良好的食品安全和监视系统的重要性,即通过迅速识别受污染的食物来源来迅速检测和管理暴发。欧洲疾病预防与控制中心(ECDC)的最新数据表明,欧洲李斯特菌病病例的增加,强调了这种感染对公共卫生的持续挑战(欧洲预防疾病预防与控制中心,2023年)。在奥地利,自2014年以来,从人,食物和环境来源的单核细胞增生菌菌分离出来。自2016年以来,这些分离株已通过全基因组测序(WGS)和核心基因组多焦点序列(CGMLST)常规分析(Cabal等,2019; Pietzka等,2019)。NRL在中央数据库中管理WGS数据,应用CGMLST跟踪簇和跟踪潜在的污染源。这种系统的监测与欧盟范围内的计划保持一致,该计划授权了侵入性李斯特菌病病例的通知,并使用基于WGS的监视作为早期爆发检测和控制的基石。在李斯特菌爆发调查中,CGMLST是一种具有高歧视性的技术。在李斯特菌爆发调查中,CGMLST是一种具有高歧视性的技术。通过分析单核细胞增生乳杆菌基因组中的保守基因来鉴定遗传相关的克隆。Ruppitsch等人(欧洲疾病预防与控制中心,2020年),用于单核细胞增生李斯特菌的键入。 具有1,701个靶基因以及Moura等人的巴斯德方案的方案(Ruppitsch等,2015)。 具有1,748个目标基因是常用的CGMLST方案,在整个欧盟成员国的监视工作协调方面起着至关重要的作用(Ruppitsch等,2015; Moura等,2016; 2016; 2016;欧洲疾病预防与控制中心,2020年)。 CGMLST在李斯特菌爆发检测中的一个基本方面是应用簇阈值(通常为7-10个等位基因差异)将与爆发相关的病例与零星的病例分开。 该阈值基于研究表明,从同一暴发中分离出来的分离率通常差异少于7-10个等位基因(Ruppitsch等,2015;欧洲疾病预防与控制中心,2022年)。 通过应用此限制,调查人员可以有效地确定何时开始爆发调查并优化食物追溯工作。 将分子数据与流行病学证据的整合,包括患者的食物史,在几项爆发研究中证明至关重要,从而可以鉴定受污染的食物来源以及快速实施控制措施,例如食品产品召回。 例如,从2014年到2019年,涉及22例欧盟成员国的22例单核细胞增生疫苗爆发与使用CGMLST污染的鲑鱼产品有关(欧洲疾病中心用于单核细胞增生李斯特菌的键入。具有1,701个靶基因以及Moura等人的巴斯德方案的方案(Ruppitsch等,2015)。 具有1,748个目标基因是常用的CGMLST方案,在整个欧盟成员国的监视工作协调方面起着至关重要的作用(Ruppitsch等,2015; Moura等,2016; 2016; 2016;欧洲疾病预防与控制中心,2020年)。 CGMLST在李斯特菌爆发检测中的一个基本方面是应用簇阈值(通常为7-10个等位基因差异)将与爆发相关的病例与零星的病例分开。 该阈值基于研究表明,从同一暴发中分离出来的分离率通常差异少于7-10个等位基因(Ruppitsch等,2015;欧洲疾病预防与控制中心,2022年)。 通过应用此限制,调查人员可以有效地确定何时开始爆发调查并优化食物追溯工作。 将分子数据与流行病学证据的整合,包括患者的食物史,在几项爆发研究中证明至关重要,从而可以鉴定受污染的食物来源以及快速实施控制措施,例如食品产品召回。 例如,从2014年到2019年,涉及22例欧盟成员国的22例单核细胞增生疫苗爆发与使用CGMLST污染的鲑鱼产品有关(欧洲疾病中心具有1,701个靶基因以及Moura等人的巴斯德方案的方案(Ruppitsch等,2015)。具有1,748个目标基因是常用的CGMLST方案,在整个欧盟成员国的监视工作协调方面起着至关重要的作用(Ruppitsch等,2015; Moura等,2016; 2016; 2016;欧洲疾病预防与控制中心,2020年)。CGMLST在李斯特菌爆发检测中的一个基本方面是应用簇阈值(通常为7-10个等位基因差异)将与爆发相关的病例与零星的病例分开。该阈值基于研究表明,从同一暴发中分离出来的分离率通常差异少于7-10个等位基因(Ruppitsch等,2015;欧洲疾病预防与控制中心,2022年)。通过应用此限制,调查人员可以有效地确定何时开始爆发调查并优化食物追溯工作。将分子数据与流行病学证据的整合,包括患者的食物史,在几项爆发研究中证明至关重要,从而可以鉴定受污染的食物来源以及快速实施控制措施,例如食品产品召回。例如,从2014年到2019年,涉及22例欧盟成员国的22例单核细胞增生疫苗爆发与使用CGMLST污染的鲑鱼产品有关(欧洲疾病中心
前列腺癌是全球最常见的疾病之一。尽管最近在治疗方面取得了进展,但晚期前列腺癌的患者的预后较差,并且该人群的需求很高。了解前列腺癌的分子决定因素和疾病的侵袭性表型可以帮助设计更好的临床试验并改善这些患者的治疗方法。晚期前列腺癌经常改变的途径之一是DNA损伤反应(DDR),包括BRCA1/2的改变和其他同源重组修复(HRR)基因。DDR途径的改变在转移性前列腺癌中尤为普遍。在这篇综述中,我们总结了原发性和晚期前列腺癌中DDR改变的普遍性,并讨论了DDR途径中的变化对DDR基因的侵袭性疾病表型,预后和种系致病性的关联的影响,而DDR基因与患有前列腺癌风险的DDR基因改变了。
我们对前瞻性收集的调查数据进行了单个机构的回顾性分析,以评估我们的目标。评估了203名在2010年3月1日至2020年9月31日之间进行机器人二尖瓣成形术的患者。在这些患者中,有63名患者对使用改良的KCCQ-12调查对术后功能结果进行了在线调查。我们进行了配对的非参数Wilcoxon和一个样本t检验,以评估测量结果中的统计显着性。