卫星遥感为地面和航空测绘的挑战提供了有效的补救措施,这些挑战以前阻碍了对全球海草范围的定量评估。商业卫星平台提供精细的空间分辨率,这是不均匀海草生态系统的一个重要考虑因素。目前,没有用于商业数据图像处理的一致协议,限制了可重复性和跨空间和时间的比较。此外,商业卫星传感器的辐射性能尚未根据沿海水域特有的黑暗和多变目标进行评估。本研究比较了来自两颗商业卫星的数据产品:DigitalGlobe 的 WorldView-2 和 Planet 的 RapidEye。每个平台都在美国佛罗里达州圣约瑟夫湾获得了一个场景,对应于 2010 年 11 月的实地活动。开发了一种可重复的处理方案,将各公司提供的基本产品图像转换为可用于各种科学应用的可分析数据。将卫星获得的表面反射与现场测量值进行了比较。WorldView-2 图像在沿海蓝色和蓝色光谱带中表现出高度不一致,长期预测过高。RapidEye 表现出比 WorldView-2 更好的一致性,但在所有光谱带上都略微预测过高。使用深度卷积神经网络将图像分为深水、陆地、水下沙地、海草和潮间带类别。将分类结果与从照片解释的航空影像中得出的海草图进行了比较。这项研究首次对 WorldView-2 和 RapidEye 在沿海系统上进行了辐射测量评估,揭示了 WorldView-2 较短波长中固有的校准问题。尽管分辨率不同,但两个平台都显示出与空中估计值高达 97% 的一致性。因此,WorldView-2 中的校准问题似乎不会干扰分类准确性,但如果估计生物量可能会有问题。这里开发的图像处理程序为 WorldView-2 和 RapidEye 图像提供了可重复的工作流程,该流程已在另外两个沿海系统中进行了测试。随着更多传感器的出现,这种方法可能会变得独立于平台。
在可靠性研究中,当使用阈值电压 (V th ) 作为指标时,阈值电压 (V th ) 的不稳定性会造成问题,因为它会完全模糊由于实际器件老化而导致的最终漂移。这种不稳定性是在电气特性测量期间观察到的,与晶体管的“偏置历史”有关,这会在结构的不同层中引入载流子捕获/去捕获。因此,需要新的方法来克服这种与捕获相关的不稳定性问题,以便准确监控器件老化。为了解决阈值电压测量的可重复性问题,我们研究了其在 GaN 晶体管上的不稳定性。研究了在实际 V th 测量之前应用的预处理步骤。所提出的预处理方法基于在栅极端子上应用专用的 V GS (t) 偏置,从而导致 V th 的稳定和可重复值。通过分析预处理的 V th 测量后的漏极泄漏测量,可以确定实现观察到的 V th 稳定性的机制。它展示了空穴注入结构的作用。提出预处理 V th 测量方法作为补充测量,以便在未来的可靠性研究中正确跟踪 pGaN HEMT 的老化。
3 美国新罕布什尔州汉诺威达特茅斯学院心理与脑科学系;4 德国柏林马克斯普朗克人类发展研究所适应性理性中心;5 美国德克萨斯州奥斯汀德克萨斯大学奥斯汀分校心理学系;6 瑞士洛桑洛桑大学医院和洛桑大学放射科;7 美国加利福尼亚州斯坦福大学心理学系,8 美国密苏里州圣路易斯华盛顿大学圣路易斯心理与脑科学系;9 波兰托伦尼古拉哥白尼大学现代跨学科技术中心;10 丹麦哥本哈根 Rigshospitalet 神经生物学研究部;11 哥本哈根大学计算机科学系
为什么需要进行可重复性培训?可重复性和可复制性是科学的核心。可重复性是指使用原始研究中使用的数据集和数据分析工作流程重新生成结果的能力,而可复制性是指在不同实验系统中获得类似结果的能力(Leek 和 Peng,2015 年;Schloss,2018 年)。尽管它们很重要,但研究表明,重现和复制同行评审的结果可能相当具有挑战性(Baker 和 Penny,2016 年;Freedman 等人,2015 年)。在过去的几年中,多个多中心项目评估了各个科学领域的可重复性和可复制性水平,并确定了对重复和确认科学结果至关重要的主要因素(Alsheikh-Ali 等人,2011 年;Amaral 等人,2019 年;Baker 等人,2014 年;Button 等人,2013 年;Cova 等人,2021 年;Errington 等人,2014 年;Friedl,2019 年;Hardwicke 等人,2018 年;Lazic,2010 年;Marque´s 等人,2020 年;开放科学合作,2015 年;Shen 等人,2012 年;Stevens,2017 年;
本报告是由美国政府某个机构资助的工作报告。美国政府或其任何机构、其雇员、承包商、分包商或其雇员均不对所披露信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用结果做任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
方法:我们开发了 WiSDM,这是一种半自动化工作流程,旨在使创建开放、可重复、透明的外来入侵物种风险地图变得民主化。为了方便使用 WiSDM 制作外来入侵物种风险地图,我们统一并公开发布了分辨率为 1 平方公里、覆盖欧洲的气候和土地覆盖数据。我们的工作流程能够减轻空间采样偏差,识别高度相关的预测因子,创建集成模型来预测风险,并量化空间自相关性。此外,我们还提出了一个新颖的应用程序,通过量化和可视化模型预测的置信度来评估模型的可迁移性。所有建模步骤、参数、评估统计数据和其他输出也均自动生成,并保存在一个 R markdown 笔记本文件中。
Johannes WM Osterrieth, James Rampersad, David Madden, Nakul Rampal, Luka Skoric, Bethany Connolly, Mark D. Allendorf, Vitalie Stavila, Jonathan L. Snider, Rob Ameloot, João Marreiros, Conchi Ania, Diana Azevedo, Enrique Vilarrasa-Garcia, Xinca F, Buan, Buan, Hanze, Hanze, Neil. R. Champness, Sarah L. Griffin, Banglin Chen, Rui-Biao Lin, Benoit Coasne, Seth Cohen, Jessica C. Moreton, Yamil J. Colón, Linjiang Chen, Rob Clowes, François-Xavier Coudert, Yong Cui, Bang Hou, Deanna M. D'Alessandro, Payne Dohen, Doen, Doe, Sun, Christian. Michael Thomas Huxley, Jack D. Evans, Paolo Falcaro, Raffaele Ricco, Omar Farha, Karam B. Idrees, Timur Islamoglu, Pingyun Feng, Huajun Yang, Ross S. Forgan, Dominic Bara, Shuhei Furukawa, Eli Sanchez, Jorge Gascon, Selvedin Telalović, Sukho Khamed, Khammed Murji, Murji Murji, Matthew R. Saum. diq, Patricia Horcajada, Pablo Salcedo-Abraira, Katsumi Kaneko, Radovan Kukobat, Jeff Kenvin, Seda Keskin, Susumu Kitagawa, Ken-ichi Otake, Ryan P. Lively, Stephen JA DeWitt, Phillip Llewellyn, Bettina V. Lotsch, Sebastian T. Ender, Alexander M. Pati M. Pati M. al, Javier García-Martínez, Noemi Linares, Daniel Maspoch, Jose A. Suárez del Pino, Peyman Moghadam, Rama Oktavian, Russel E. Morris, Paul S. Wheatley, Jorge Navarro, Camille Petit, David Danaci, Matthew J. Rosseinsky, Alexandros P., Kat Schunder, Martin Xu, Sergeant, Sergian, Sergeant. s Mouchaham, David S. Sholl, Raghuram Thyagarajan, Daniel Siderius, Randall Q. Snurr, Rebecca B. Goncalves, Shane Telfer, Seok J. Lee, Valeska P. Ting, Jemma L. Rowlandson, Takashi Uemura, Tomoya Iiyuka, Monique A. van der Revere, David Revere, Speed, M.J. and Lamaire, Krista S. Walton, Lukas W. Bingel, Stefan Wuttke, Jacopo Andreo, Omar Yaghi, Bing Zhang, Cafer T. Yavuz, Thien S. Nguyen, Felix Zamora, Carmen Montoro, Hongcai Zhou, Angelo Kirchon, and David Fairen-Jimenez*
Johannes WM Osterrieth, James Rampersad, David Madden, Nakul Rampal, Luka Skoric, Bethany Connolly, Mark D. Allendorf, Vitalie Stavila, Jonathan L. Snider, Rob Ameloot, João Marreiros, Conchi Ania, Diana Azevedo, Enrique Vilarrasa-Garcia, Xinca F, Buan, Buan, Hanze, Hanze, Neil. R. Champness, Sarah L. Griffin, Banglin Chen, Rui-Biao Lin, Benoit Coasne, Seth Cohen, Jessica C. Moreton, Yamil J. Colón, Linjiang Chen, Rob Clowes, François-Xavier Coudert, Yong Cui, Bang Hou, Deanna M. D'Alessandro, Payne Dohen, Doen, Doe, Sun, Christian. Michael Thomas Huxley, Jack D. Evans, Paolo Falcaro, Raffaele Ricco, Omar Farha, Karam B. Idrees, Timur Islamoglu, Pingyun Feng, Huajun Yang, Ross S. Forgan, Dominic Bara, Shuhei Furukawa, Eli Sanchez, Jorge Gascon, Selvedin Telalović, Sukho Khamed, Khammed Murji, Murji Murji, Matthew R. Saum. diq, Patricia Horcajada, Pablo Salcedo-Abraira, Katsumi Kaneko, Radovan Kukobat, Jeff Kenvin, Seda Keskin, Susumu Kitagawa, Ken-ichi Otake, Ryan P. Lively, Stephen JA DeWitt, Phillip Llewellyn, Bettina V. Lotsch, Sebastian T. Ender, Alexander M. Pati M. Pati M. al, Javier García-Martínez, Noemi Linares, Daniel Maspoch, Jose A. Suárez del Pino, Peyman Moghadam, Rama Oktavian, Russel E. Morris, Paul S. Wheatley, Jorge Navarro, Camille Petit, David Danaci, Matthew J. Rosseinsky, Alexandros P., Kat Schunder, Martin Xu, Sergeant, Sergian, Sergeant. s Mouchaham, David S. Sholl, Raghuram Thyagarajan, Daniel Siderius, Randall Q. Snurr, Rebecca B. Goncalves, Shane Telfer, Seok J. Lee, Valeska P. Ting, Jemma L. Rowlandson, Takashi Uemura, Tomoya Iiyuka, Monique A. van der Revere, David Revere, Speed, M.J. and Lamaire, Krista S. Walton, Lukas W. Bingel, Stefan Wuttke, Jacopo Andreo, Omar Yaghi, Bing Zhang, Cafer T. Yavuz, Thien S. Nguyen, Felix Zamora, Carmen Montoro, Hongcai Zhou, Angelo Kirchon, and David Fairen-Jimenez*
Johannes WM Osterrieth, James Rampersad, David Madden, Nakul Rampal, Luka Skoric, Bethany Connolly, Mark D. Allendorf, Vitalie Stavila, Jonathan L. Snider, Rob Ameloot, João Marreiros, Conchi Ania, Diana Azevedo, Enrique Vilarrasa-Garcia, Xinca F, Buan, Buan, Hanze, Hanze, Neil. R. Champness, Sarah L. Griffin, Banglin Chen, Rui-Biao Lin, Benoit Coasne, Seth Cohen, Jessica C. Moreton, Yamil J. Colón, Linjiang Chen, Rob Clowes, François-Xavier Coudert, Yong Cui, Bang Hou, Deanna M. D'Alessandro, Payne Dohen, Doen, Doe, Sun, Christian. Michael Thomas Huxley, Jack D. Evans, Paolo Falcaro, Raffaele Ricco, Omar Farha, Karam B. Idrees, Timur Islamoglu, Pingyun Feng, Huajun Yang, Ross S. Forgan, Dominic Bara, Shuhei Furukawa, Eli Sanchez, Jorge Gascon, Selvedin Telalović, Sukho Khamed, Khammed Murji, Murji Murji, Matthew R. Saum. diq, Patricia Horcajada, Pablo Salcedo-Abraira, Katsumi Kaneko, Radovan Kukobat, Jeff Kenvin, Seda Keskin, Susumu Kitagawa, Ken-ichi Otake, Ryan P. Lively, Stephen JA DeWitt, Phillip Llewellyn, Bettina V. Lotsch, Sebastian T. Ender, Alexander M. Pati M. Pati M. al, Javier García-Martínez, Noemi Linares, Daniel Maspoch, Jose A. Suárez del Pino, Peyman Moghadam, Rama Oktavian, Russel E. Morris, Paul S. Wheatley, Jorge Navarro, Camille Petit, David Danaci, Matthew J. Rosseinsky, Alexandros P., Kat Schunder, Martin Xu, Sergeant, Sergian, Sergeant. s Mouchaham, David S. Sholl, Raghuram Thyagarajan, Daniel Siderius, Randall Q. Snurr, Rebecca B. Goncalves, Shane Telfer, Seok J. Lee, Valeska P. Ting, Jemma L. Rowlandson, Takashi Uemura, Tomoya Iiyuka, Monique A. van der Revere, David Revere, Speed, M.J. and Lamaire, Krista S. Walton, Lukas W. Bingel, Stefan Wuttke, Jacopo Andreo, Omar Yaghi, Bing Zhang, Cafer T. Yavuz, Thien S. Nguyen, Felix Zamora, Carmen Montoro, Hongcai Zhou, Angelo Kirchon, and David Fairen-Jimenez*
在 GaN HEMT 的可靠性研究中,阈值电压 (V th ) 的波动对监测电漂移提出了挑战。虽然欧姆 p-GaN 等技术可以减轻 V th 波动,但可恢复电荷捕获的问题仍然存在。因此,在进行可靠性研究时采用新颖的特性分析方法至关重要,这样才能测量内在变化而不是即使在未退化的晶体管中也存在的电荷捕获效应。本文阐述的一种方法可以可靠且可重复地测量欧姆 p-GaN 栅极 HEMT GaN 的 V th 。在阈值电压测量之前立即引入专用的栅极偏置曲线以使其稳定。这个预处理阶段需要负偏置电压,然后再施加适当高的电压才能有效。所介绍的新协议也被证明适用于其他 HEMT GaN 结构。
