研究了液晶环氧树脂 (LCER) 的蠕变行为,并将其与由相同环氧单体制备的非 LCER 进行了比较。使用 Burgers 模型评估实验数据以解释液晶 (LC) 相的增强作用。使用时间-温度叠加原理预测材料的长期性能。结果表明,在树脂网络中引入 LC 相可以降低材料的蠕变应变和蠕变应变率,尤其是在高温下。从模拟中提取的参数表明,LC 相的存在增强了树脂的瞬时弹性、阻滞弹性和永久流动阻力。提出用刚性填料效应和交联效应来解释增强机制。
简介轻巧的结构对于各种运输领域的CO 2降低特别有益。但是,由于制造过程缓慢,碳纤维增强聚合物尚未取得更大的成功,因此它们不足以进行大量生产。与树脂转移成型(RTM)工艺相比,压缩树脂转移成型(CRTM)过程的表征是在平面外方向上的浸渍流非常短,该过程主要是平面内。此外,在CRTM过程中已经报道了改进的界面特性,表明短期循环时间和零件性能之间具有协同作用[1]。可以通过表示粘性力,织物压实和随时间的渗透性的相互作用来识别处理极限。这项研究的目的是评估CRTM过程,以非常快速生产环氧基质复合零件。
以下内容取代买方文件。尽管据 Huntsman 所知,本出版物中包含的信息和建议在出版之日准确无误,但本文所含内容不得解释为任何明示或暗示的陈述、保证或条件,包括但不限于任何适销性或特定用途适用性的保证、不侵犯任何知识产权的保证、或有关质量或与先前描述或样品一致的保证,买方承担因使用此类产品(无论是单独使用还是与其他物质结合使用)而导致的所有风险和责任。本文所述的任何声明或建议均不得解释为任何产品是否适合买方或用户的特定用途,或是否诱使他人侵犯任何专利或其他知识产权。数据和结果基于受控条件和/或实验室工作。买方有责任确定此类信息和建议的适用性以及任何产品是否适合其特定用途,并确保其对产品的预期用途不侵犯任何知识产权。
四糖4,4'-二氨基甲苯甲烷(TGDDM)环氧树脂。这些树脂的热分化是出色的。他们的弱点包括高水分吸收,低断裂韧性以及3%或更低的突破。1双苯酚A(DGEBA)的二甘油乙醚也常用。环氧树脂用交联剂固化,其中胺交联剂至少具有两个反应性胺基团,它们交联环氧化物树脂。可以根据所用的固化剂,选择适当的时间和固化温度以及使用以最大程度地减少复合材料中的空隙的存在来改变固化的环氧树脂的机械性能。通常使用的固化剂是二氨基二苯基磺基(DDS),三乙二烯四矿(TETA),二杨酰胺(Dicyandiamide(dicy),苯甲酰二甲基胺(BDMA)和硼龙三甲基胺(Boron Trifluoride)。