糖尿病会影响全球4.25亿个人,预计在未来20年中,数字将增加到6亿人(1)。在1型糖尿病(T1D)中,患者经历胰岛素产生降低引起的胰岛素缺乏症,而在2型糖尿病(T2D)中,患者经历了胰岛素抵抗(IR),通常与肥胖有关(2)。导致IR发展的主要因素是增加氧化应激,高血糖和脂质水平升高(3)。尽管有助于控制血糖水平的疗法进步,但心血管并发症仍然是该人群发病率和死亡率的主要原因(2、4、5)。在心脏中,IR会导致钙处理,线粒体功能障碍和代谢不足的失调,导致一系列病理,其中包括心肌 - 心脏情感功能障碍,舒张性障碍功能障碍,心肌细胞死亡,心肌死亡和内膜骨化(6,7,7,7,7,7,7)。与IR相关的血管事件通常与高血压和增强的血栓形成环境有关(8、9)。虽然阻塞性血凝块可以导致心肌梗塞,脑血管事件或关键的肢体缺血,并且由于血小板与止血蛋白之间的复杂相互作用而发生(10)。在这种高度异质的人群中,发展此类并发症的风险是可变的,并取决于一系列因素,包括年龄,糖尿病持续时间,血糖控制和IR。在内分泌学领域的这一研究主题中,我们介绍了8篇文章,旨在探索IR与心血管健康之间的关系。他等人。动脉硬化是糖尿病的众所周知的并发症(11)。检查了放射线间脂肪组织(IMAT)分析是否可以用作指示T2D患者动脉硬化的诊断措施。总共包括549例新诊断的T2D患者,并使用颈动脉斑块负担来表明动脉粥样硬化。构建了三个模型以评估动脉粥样硬化的风险:临床模型,一个放射组学模型(基于胸部CT图像的IMAT分析)和临床放射线组合组合模型(一种整合临床放射学特征的模型)。使用曲线和DELONG测试下的区域比较了这三个模型的性能。临床 - 放射线组合模型和放射线学模型表明,在表明动脉粥样硬化方面的性能更好。作者
TCP基因家族成员在植物生长和发育中发挥了多种功能,并以在该家族中发现的第一个三个家庭成员的命名,即TB1(Teosinte分支1),细胞增多菌(CYC)和增殖的细胞因子1/2(PCF1/2)。氮(N)是饲料产量的关键元素;但是,氮肥的过度应用可以增加农业生产成本和环境压力。因此,发现低N耐受基因的发现对于上燕麦种质和生态保护的遗传改善至关重要。燕麦(Avena sativa L.)是世界上的主要草饲料之一,但尚未对TCP基因的全基因组分析及其在低氮应激中的作用。这项研究使用生物信息学技术确定了燕麦TCP基因家族成员。它分析了他们的系统发育,基因结构分析和表达模式。结果表明,ASTCP基因家族包括49个成员,大多数ASTCP编码的蛋白是中性或酸性蛋白。系统发育树将ASTCP基因家族成员分类为三个亚家族,并且每个亚科具有不同的保守结构域和功能。此外,在ASTCP基因的启动子中检测到了多个与非生物应激,光反应和激素反应有关的启动子。从燕麦鉴定出的49个ASTCP基因在18个燕麦染色体上分布不均。这项研究为其他OAT属中TCP基因家族的未来深入研究提供了重要的基础,并揭示了改善基因利用率的新研究思想。实时定量聚合酶链反应(QRT-PCR)的结果表明,在低氮应激下,ASTCP基因在各种组织中具有不同的表达水平,这表明这些基因(例如ASTCP01,ASTCP03,ASTCP2222222222222222,和ASTCP38)在增长和发展中具有多个生长。总而言之,这项研究分析了ASTCP基因家族及其在全基因组水平低氮应激中的潜在功能,这为进一步分析燕麦中ASTCP基因的功能奠定了基础,并为探索燕麦中出色胁迫耐受性基因的理论基础提供了理论基础。
结果:肺炎支原体分离株对红霉素和阿奇霉素的耐药率均为100%(62/62)。乙酰螺旋霉素(16元大环内酯类)的最低抑菌浓度(MIC)低于红霉素和阿奇霉素。2023年阿奇霉素的MIC明显高于2021年和2022年。未观察到对四环素和左氧氟沙星的耐药。74.2%和25.8%的分离株被鉴定为P1型1型和P1型2型,M4-5-7-2(61.3%)和M3-5-6-2(22.6%)为主要的多位点可变数目串联重复分析(MLVA)类型。所有分离株均存在A2063G突变(100%)。59例患者中,45例(76.3%)为重症肺炎支原体肺炎,14例(23.7%)合并感染。发热持续时间为12天(1~30天),大环内酯类抗生素治疗后发热持续时间为8天(1~22天)。
早期疫病(EB),由linariae(Neerg。)(SYN。A。tomatophila)Simmons是一种影响世界各地的西红柿(Solanum lycopersicum L.)的疾病,具有巨大的经济影响。本研究的目的是绘制与西红柿中EB耐药性相关的定量性状基因座(QTL)。F 2和F 2:3的映射种群由174条线组成,这些群体在2011年的自然条件下评估了NC 1celbr(抗性)×Fla。7775(易感性),并通过人工接种在2015年的温室中进行了自然条件评估。总共使用了375个具有特定PCR(KASP)测定法的基因分型父母和F 2种群的分析。表型数据的广泛遗传力估计为2011年和2015年的疾病评估分别为28.3%和25.3%。QTL分析显示,六个QTL与染色体2、8和11(LOD 4.0至9.1)上的EB抗性相关,解释了3.8至21.0%的表型变异。这些结果表明,NC 1celbr中EB耐药性的遗传控制是多基因的。这项研究可能有助于将EB抗性QTL和标记辅助选择(MAS)进一步绘制,以将EB耐药基因转移到精英番茄品种中,包括扩大番茄中EB耐药性的遗传多样性。
1医学系,路德维希 - 马克西米利人 - 穆斯蒂蒂蒂尼斯大学慕尼黑,慕尼黑,德国,德国,2个糖尿病学科,内科和肾脏科,内科和肾病学,Eberhard-karls-karls-karls-universitättounty,德国,德国,大学医学中心,大学医院,大学医院,大学医院,univerhard-karls-karls-karls-karls-universit;德国的图宾根,4糖尿病研究和代谢疾病研究所,赫尔姆霍尔兹中心,图宾根大学,图宾根大学,欧宾根大学,5个慈善机构 - 柏林大学医学中心,柏林伯林大学柏林和汉堡大学柏林大学柏林大学医学免疫学研究所,柏林柏林哥伦比亚郡医学院,柏林居民,伯林·伯林(Berlin Institute for Libin)。 Therapies (BCRT), Berlin, Germany, 7 IDM/FMEG Center of the Munich at the University of Tübingen, German Center for Diabetes (DZD), Tübingen, Germany, 8 Graduate Training Center of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany, 9 Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of医学,LMU慕尼黑,德国慕尼黑的PETTENKOFER公共卫生学院,德国糖尿病研究中心10号,德国Neuherberg,德国
尽管在过去几十年中取得了巨大进步,但治疗失败仍然是抗癌疗法的重大负担。肿瘤细胞倾向于通过克隆进化和抗性亚克隆的选择来逃避化疗,从而导致治疗复发。下一代测序旨在找到耐药性癌细胞串扰中有希望的候选变异。这种方法可能进一步有助于分子肿瘤板适应每个患者的靶向治疗方案(1)。髓增生性综合征慢性髓样白血病(CML)成为有效且成功的靶向治疗的榜样。cml是一种罕见的肿瘤,主要是由相互易位t(9; 22)(q34; q11)引起的,导致BCR :: ABL1融合基因的形成(2)。在许多情况下,它通过酪氨酸激酶抑制剂(TKI)成功治疗,尤其是与BCR :: ABL1激酶结合的2-苯基氨基嘧啶伊替尼,从而预防了下游靶标的磷酸化(3)。尽管总体10年生存率为83%,但在治疗的五年内,所有患者中有20%至25%遭受治疗衰竭(4,5)。第二代和第三代TKI,即尼洛替尼,达沙替尼,鲍苏替尼和庞替尼,开发了以可变成功的变化(6,7)克服这种抗药性(6,7)。TKI抗性发生在依赖性或独立于BCR :: ABL1激酶改变。第一个提及的主要是由BCR :: abl1中的突变引起的,例如ABL1 p。(Tyr253His),p。(GLU255VAL)或p。(THR315ile))防止TKIS与BCR或BCR expristion TKIS结合,以防止TKIS与BCR :: ABCR1 anbl1 anbl1 and anbl1 and anbl1fination and Overection(8)。对于BCR :: ABL1-独立抵抗力,讨论了几种机制,例如,药物过表达EF ef lox top子转运蛋白,尤其是ATP结合盒(ABC)转运蛋白转运蛋白家族成员P-糖蛋白(P-GP,P-GP,ABCB1)或乳腺癌抗癌蛋白(BCRP,ABCG2)的传播(abcg2)的demaption(p-gp,abcb1),abcg2 abcg2 ryaption(abcg2)。 10)。此外,显示遗传像差,例如第8条或影响RUNT相关转录因子1(RUNX1)的突变,显示出患者中爆炸危机或抗TKI耐药性克隆的进展(11,12)。除了临床研究外,体外模型还可以详细研究耐药性的机理。这样的模型是关键工具,因为这些模型从这些模型中得出的发现被成功地转化为诊所,例如预测药物效率并改善治疗方案(13)。可以通过暴露于缓慢增加抗癌药物浓度或通过脉冲治疗来获得肿瘤细胞系的耐药性。 在这里,我们使用外显子组测序在体外模型中研究TKI抗性CML中的遗传变异。 为此,我们建立了伊马替尼和尼洛替尼抵抗的生物学重复。 我们报告了伊马替尼和尼洛替尼抗性发展中演变的序列变体。 此外,我们研究了候选变体PTPN11 p。(Tyr279Cys),PDGFRB p。(GLU578GLN)和NRAS p。(GLN61LYS)对TKI治疗的反应的影响。可以通过暴露于缓慢增加抗癌药物浓度或通过脉冲治疗来获得肿瘤细胞系的耐药性。在这里,我们使用外显子组测序在体外模型中研究TKI抗性CML中的遗传变异。为此,我们建立了伊马替尼和尼洛替尼抵抗的生物学重复。我们报告了伊马替尼和尼洛替尼抗性发展中演变的序列变体。此外,我们研究了候选变体PTPN11 p。(Tyr279Cys),PDGFRB p。(GLU578GLN)和NRAS p。(GLN61LYS)对TKI治疗的反应的影响。
结直肠癌(CRC)是近年来全球发病率和死亡率最高的恶性肿瘤之一,主要起源于结肠或直肠的粘膜组织,并有可能快速发展为侵袭性癌症。它的发病机理很复杂,涉及许多因素,包括遗传背景,生活方式和饮食习惯。早期检测和治疗是提高CRC患者存活率的关键。然而,普遍的问题是患者可以严重抵抗治疗,这大大增加了治疗的复杂性和挑战。因此,揭开和克服CRC的抵抗力已成为研究的重点。线粒体(细胞的能量中心)在细胞代谢,能量供应和凋亡过程中起着至关重要的作用。在CRC中,线粒体功能障碍不仅会损害正常的细胞功能,还会促进肿瘤耐药性。因此,对线粒体功能障碍与CRC发育机制之间的关系有深入的了解,以及促进对化学疗法药物抗药性的机制,对于靶向疗法的发展,增强药物效率以及改善患者寿命的治疗效果和质量至关重要。
牙龈卟啉单胞菌(P. gingivalis)是一种革兰氏阴性口腔厌氧菌,在牙周炎的发病过程中起关键作用。P. gingivalis表达多种毒力因子,破坏先天性和适应性免疫,使其在宿主体内存活、繁殖并破坏牙周组织。除了牙周病外,P. gingivalis还与全身性疾病有关,胰岛素抵抗是其中重要的病理基础。P. gingivalis引起全身炎症反应,破坏胰岛素信号通路,诱导胰腺b细胞功能减退和数量减少,导致胰岛素敏感性降低,从而产生胰岛素抵抗(IR)。本文系统综述了P. gingivalis引起胰岛素抵抗的机制研究,讨论了P. gingivalis与基于胰岛素抵抗的全身性疾病的关联,并最终提出了相关的治疗方法。总之,通过系统地综述牙龈卟啉单胞菌通过胰岛素抵抗引起全身性疾病的相关机制,我们希望为未来相关全身性疾病的基础研究和临床干预提供新的见解。
我们之前在一项横断面研究中发现胰岛素抵抗 (IR) 与血浆黄嘌呤氧化还原酶 (XOR) 活性相关。然而,IR 是否会诱导 XOR 活性增加尚未阐明。这项回顾性纵向观察研究包括 347 名参与者(173 名男性,174 名女性),他们每年接受健康检查并且未接受过药物治疗。在基线时确定了稳态模型评估 IR (HOMA-IR) 指数以及身体和实验室测量值。在基线和 12 个月的随访检查中,使用我们基于 [ 13 C 2 , 15 N 2 ] 黄嘌呤和液相色谱/三重四极杆质谱的新型检测方法测定血浆 XOR 活性。 IR 受试者(定义为 HOMA-IR 指数 ≥ 1.7(n = 92))的血浆 XOR 活性水平显著(p < 0.001)高于无 IR 的受试者(n = 255),12 个月后,180 人(51.9%)的血浆 XOR 活性增加。多变量线性和逻辑回归分析表明,基线时的 IR(而不是 BMI 或腰围)与血浆 XOR 活性显著相关(β = 0.094,p = 0.033),并且经过调整各种临床参数(包括基线时的血浆 XOR 活性)后,12 个月期间血浆 XOR 活性增加(比值比,1.986;95% 置信区间,1.048–3.761;p = 0.035)。这些结果表明,IR 以与肥胖无关的方式诱导血浆 XOR 活性增加。
微生物与植物之间的相互作用已成为微生物学和植物生物学的重要研究领域。非生物应力,包括干旱,盐度和重金属,对全球植物生长产生了实质性影响。这些压力源,无论是单独或结合发生的,都会破坏营养的吸收并阻碍植物的整体发展(Mushtaq等,2023)。然而,有益的微生物在增强对这种非生物挑战的植物弹性方面表现出了潜力(Cardarelli等,2022; El-Shamy等,2022)。居住在根际和植物圈中的某些微生物可以促进植物水和养分,同时提供防止有害环境毒素的保护(Degani,2021; Redondo等,2022)。过去十年见证了由测序和毛质技术的进步驱动的显着步伐,从而揭示了在非生物胁迫下构成植物 - 微生物相互作用的复杂机制。这些细微的关系正在逐渐被解密,为预测和调节策略铺平道路。利用植物 - 微生物相互作用来支持植物适应非生物压力,在农业生产力,生物修复策略和生态可持续性中具有变革性的潜力。这项研究的努力旨在彰显微生物在增强植物抵抗非生物胁迫方面的重要作用。调查还深入研究了根间微生物群落对植物更广泛健康的复杂影响。Qi等。Qi等。在这个研究主题中,十项学术贡献深入研究了多种机制,通过这些机制,微生物可以帮助植物适应环境爆发,从而维护其生长和生存。总的来说,这些文章提供了有关微生物如何促进生态系统功能和植物福祉的全面观点。响应紧急市场需求和严重的非生物压力,增强植物生产和生存已成为研究的核心重点。利用RNA干扰(RNAI)技术来构建油酸去饱和酶(FAD2)基因的IHPRNA植物表达载体,从而导致油酸含量升高,并降低了菜籽中亚油酸和亚麻酸的水平。值得注意的是,根际微生物群落作为遗传评估的指标
