这项工作是针对国际零排放车辆联盟进行的,并得到其成员的支持(Baden-Würtemberg,不列颠哥伦比亚省,加利福尼亚州,加拿大,智利,康涅狄格州,哥斯达黎加,德国,德国,马里兰州,马里兰州,马萨诸塞州,马萨诸塞州,荷兰,荷兰,纽约,纽约,纽约,新西兰,诺伊岛,国王和伊里格岛,贵族,贵族,贵族,贵族,华盛顿)。We thank Alex Keynes (Transport & Environment), Jean-Philippe Hermine (IDDRI), and Johannes Betz (Öko Institut), as well as our ICCT colleagues Aditya Mahalana, Marie Rajon Bernard, Nikita Pavlenko, Peter Slowik, and Yidan Chu for reviewing an earlier version of the report.我们还向国际零排放车辆联盟的成员表示感谢,他们提供了有关政策活动的关键意见,并审查了该报告的早期版本。他们的评论并不意味着认可,任何错误都是作者拥有的。
由于依赖进口柴油,运输成本高昂,北极偏远柴油微电网的电力和水处理成本高昂。过去在这些地区实施自来水的尝试被证明是困难的,因为用进口柴油抽水、运输和加热水的能源成本很高。已经开发了一种模块化水再利用 (WR) 系统,为缺乏自来水的个体家庭提供更实惠的分布式供水服务。然而,如果由社区柴油微电网供电,这些 WR 系统仍然消耗大量电力,并可能给家庭带来高昂的能源成本负担。在这里,我们扩展了一个混合整数线性优化模型——可再生能源的食物-能源-水微电网优化 (FEWMORE)——将运行 WR 系统的影响视为连接到微电网的可调度负载。我们将该模型应用于没有自来水的阿拉斯加西部社区,以分析太阳能和风能的 WR 系统的需求响应 (DR)。目前,微电网中模块化供水服务的能源优化、水处理和需求响应模型尚未阐明这种分析。集成太阳能光伏 (PV) 阵列为 WR 系统供电,而不是仅依靠柴油发电,可在 20 年的使用寿命内使项目总成本(安装和维护太阳能光伏以及从柴油微电网购买电力)降低 3%。优化调度水处理过程可节省更多成本:项目总成本降低 13%,柴油使用量减少 37%。
图(a)按国际电信联盟(ITU,1985)分类如下: A1:地面站传输,可能对地球站接收造成干扰 A2:地球站传输,可能对地面站接收造成干扰 B1:一个空间系统的空间站传输,可能对另一个空间系统的地球站接收造成干扰 B2:一个空间系统的地球站传输,可能对另一个空间系统的空间站接收造成干扰 C1:空间站传输,可能对地面站接收造成干扰 C2:地面站传输,可能对空间站接收造成干扰 E:一个空间系统的空间站传输,可能对另一个空间系统的空间站接收造成干扰 F:一个空间系统的地球站传输,可能对另一个空间系统的地球站接收造成干扰
摘要。随着电池储能技术的开发,集中式电池储能系统(CBESS)在开发电力方面具有广泛的前景。同时,电动汽车(EV)的退休锂离子电池为电池储能系统(BESS)提供了新的选择。本文通过用锂离子二人电池(SLB)更换新的锂离子电池(SLB),并以经济指标作为净现有价值(NPV)来评估经济福利,从而评估lithium-ion二人二人电池(SLB),从而研究了南部澳大利亚南部的集中式电池能量存储系统(CRBESS), 储能系统。 本文提出了一种计算频率控制辅助服务(FCAS)收入的计算方法,该方法指的是在建立经济模型时,指的是市场股票率(MSR)。 此外,考虑到锂离子电池的残差值。 本文使用经济模型来计算CRBESS的盈利能力和发展潜力。 从经济角度来看,分析了CRBESS与CBESS的优势和可行性。储能系统。 本文提出了一种计算频率控制辅助服务(FCAS)收入的计算方法,该方法指的是在建立经济模型时,指的是市场股票率(MSR)。 此外,考虑到锂离子电池的残差值。 本文使用经济模型来计算CRBESS的盈利能力和发展潜力。 从经济角度来看,分析了CRBESS与CBESS的优势和可行性。储能系统。 本文提出了一种计算频率控制辅助服务(FCAS)收入的计算方法,该方法指的是在建立经济模型时,指的是市场股票率(MSR)。 此外,考虑到锂离子电池的残差值。 本文使用经济模型来计算CRBESS的盈利能力和发展潜力。 从经济角度来看,分析了CRBESS与CBESS的优势和可行性。储能系统。本文提出了一种计算频率控制辅助服务(FCAS)收入的计算方法,该方法指的是在建立经济模型时,指的是市场股票率(MSR)。此外,考虑到锂离子电池的残差值。本文使用经济模型来计算CRBESS的盈利能力和发展潜力。从经济角度来看,分析了CRBESS与CBESS的优势和可行性。
CSIRO 建议,本出版物中包含的信息是基于科学研究的一般性陈述。建议读者注意,此类信息可能不完整或无法在任何特定情况下使用。因此,在未事先寻求专家的专业、科学和技术建议的情况下,不得依赖或采取行动。在法律允许的范围内,CSIRO(包括其员工和顾问)对任何人因使用本出版物(部分或全部)及其所含信息或材料而直接或间接产生的任何后果(包括但不限于所有损失、损害、成本、费用和任何其他赔偿)不承担任何责任。
国际能源署 (IEA) 预测,澳大利亚将成为世界上光伏废物堆积量最大的国家之一。维多利亚州可持续发展局 (SV) 最近的市场分析表明,从 2020 年中期开始,大量光伏系统将进入废物流,这是由于 2010 年慷慨的上网电价补贴和联邦政府补贴刺激了太阳能产业的蓬勃发展。据估计,到 2035 年,全澳大利亚将有大约 10 万吨光伏板进入废物流,其中新南威尔士州将有大约 3 万吨。就电池而言,澳大利亚是全球领先的储能电池市场之一。然而,澳大利亚只有 3-5% 的电池(不包括废旧铅酸电池 [LAB])被回收利用。
• 重点关注矿物/金属的回收,以用于广泛的环境(电力、IT、小型工具……)或作为国家关键矿物/金属战略供应的一部分。 • 目前的做法——火法冶金和湿法冶金——都存在环境问题。正在进行研究以寻求替代方案:例如,从 NREL 中“直接回收”。 • 确保为发展中国家的 LiBESS 制定新的“电子垃圾”制度至关重要:从发达国家的“垃圾场”到电动汽车电池回收行业的可持续平台 • 重复使用:
请注意,在本报告中,“再利用”是指将废旧电动汽车电池用于二次利用。实际上,整个电池组都可以重复使用,或者其模块可以重新用于新电池。电池再利用的基本定义是,在重复使用时,电池或其组件保留其原有的储能功能。如果报废电池不被重新使用,则将其回收或处置。本报告中的回收是指将电池重新加工成新原材料8。这需要特定于锂离子电池的回收方法,并由专门从事此类工作的操作人员和设施进行。废旧电池的某些部件也可以用作能源。欧盟一般禁止未经其他处理而简单处置(即填埋)整个电动汽车电池。
摘要 — 由于生物医学信号幅度非常低,且具有与环境噪声类似的高共模特性,因此用于这些信号的放大器应具有高 CMRR。交叉耦合放大器对差分和共模信号的负载行为导致高 CMRR,因此会强烈衰减共模信号。由于交叉耦合放大器差分增益较低,因此其负载与电流复用运算放大器相结合。在 0.18 µm CMOS 技术中,模拟并比较了具有传统共模反馈和改进负载的全差分电流复用 OTA 的最终 CMRR。模拟了它们的 CMRR 失配和工艺变化。根据模拟结果,对于相同的功耗 W 和 L,改进的交叉耦合负载电流复用具有最佳性能。在最坏情况下,其 CMRR 约为 90 dB,而总功耗在 1.8 V 电源电压下为 18 µW。带宽为 4.8 kHz,此带宽内的总输入参考噪声为 1.04 µV rms 和 0.43 µV rms(0.5 至 100 Hz),这对于本研究中考虑的 EEG 应用来说是可接受的噪声和带宽。