保留所有权利。未经许可就不允许重复使用。(未经同行评审)是作者/资助者,他已授予Biorxiv的许可,以永久显示预印本。此预印本的版权持有人。http://dx.doi.org/10.1101/816835 doi:Biorxiv Preprint首次在线发布,2019年10月24日;
人们认为,人类能够自适应地执行各种任务的能力源自认知信息的动态转换。我们假设这些转换是通过连接枢纽(选择性整合感觉、认知和运动激活的大脑区域)中的连接激活来实现的。我们利用最近使用功能连接来映射大脑区域之间活动流的进展,在认知控制任务期间从 fMRI 数据构建任务执行神经网络模型。我们通过模拟这个经验估计的功能连接模型上的神经活动流来验证连接枢纽在认知计算中的重要性。这些经验指定的模拟通过在连接枢纽中整合感觉和任务规则激活产生了高于偶然的任务表现(运动反应)。这些发现揭示了连接枢纽在支持灵活认知计算方面的作用,同时证明了使用经验估计的神经网络模型深入了解人类大脑认知计算的可行性。
在几种物种中,抗性和易感个体之间的表型差异与基因表达的组成型变化有关。例如,在对神经毒性杀虫剂有抵抗力的个体中观察到了排毒基因家族的构型过表达。这表明了代谢解毒在抗性中的作用,在某些情况下,允许允许使用哪些基因参与耐药的遗传方法。细胞色素P450单糖酶和三磷酸腺苷(ATP)结合盒(ABC)转运蛋白的情况就是这种情况。5,24 - 29除解毒基因之外,已经记录了编码角质层合成基因的过表达,并导致耐药性和易感性的独立物(即穿透性抗性)之间的表皮变化。30该证据突出了通常基于抗性表型的复杂性,并表明需要研究基因表达以充分理解昆虫抗性。与其他杀虫剂相反,抗药性个体中的表达情况已被广泛阐明,蚊子对CSIS的抗性表型的整个基因表达模式仍然被忽略了。在这里,我们的目标是通过分析蚊子CX的易感和耐DFB个体的构成基因表达来弥补这一差距。pipiens。
Open Access本文在创意共享属性下获得许可 - 非商业 - 非洲毒素4.0国际许可证,该许可允许以任何中等或格式的任何非商业用途,共享,分发和复制,只要您与原始作者提供适当的信誉,并为您提供了符合创造性共识许可的链接,并提供了持有货物的启动材料。您没有根据本许可证的许可来共享本文或部分内容的适用材料。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问h t p://c r e a t i v e c o m m o ns。or g/l i c e n s e s/b y-n c-n c-n c-n d/4。0/。
家族A DNA聚合酶(Polas)形成了参与DNA复制和修复的现有聚合酶的重要且研究的一类。否则,尽管在独立的,专门的作品中表征了多个子家族,但到目前为止,他们的综合性分类却缺少。因此,我们重新审查了所有目前可用的pola semence,将它们的成对相似性转化为欧几里得空间中的位置,将它们分为19个主要簇。中有11个对应于已知的亚家族,但以前没有八个特征。对于每个组,我们都会汇编它们的一般特征,检查其系统发育关系,并在基本序列基序中进行保护分析。大多数亚家族与生命的特定领域有关(包括噬菌体),但一个亚科出现在细菌,古细菌和真核生物中。我们还表明,两个新的小家族含有功能性酶。我们使用alphafold2来生成缺乏实验降低结构的所有群集的高牢固预测模型。我们确定了涉及结构变化,有序的插入和明显的尿嘧啶-DNA糖基酶(UDG)结构域的明显结构掺入的新的保守效果。最后,T7样噬菌体子集的网络和结构分析表明,将3'–5'EXO和POL结构域分裂为两个单独的基因,第一次在Polas中观察到。
“因此,据我们所知,它们是第一类以三阶响应为主要非线性响应的材料。此外,我们表明,由于这些材料中的自旋分裂较大,这种响应非常大。此外,交替磁体的弱自旋轨道耦合(与磁交换项相比)也出现在其非线性响应中,为这类新材料提供了一种新颖的传输特性,而这种特性以前仅限于寻找线性异常霍尔电导率。”
Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在材料的信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您将需要直接从版权所有者获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
2020 年至 2021 年,中国科学院武汉植物园和英国皇家植物园的研究人员在英国、西班牙和中国收集了 20 种壳斗科植物的橡子。他们模拟了动物进食的影响,小心地去除了高达 96% 的橡子营养储备,但不损害胚胎。然后种植受影响的种子,并监测其从发芽到幼苗生长的发育情况。这项研究发表在《生态学杂志》上。
深度学习 (DL) 和可解释人工智能 (XAI) 已成为强大的机器学习工具,可用于识别空间或时间域中的复杂预测数据模式。在这里,我们考虑将 DL 和 XAI 应用于大型组学数据集,以便在分子水平上研究生物衰老。我们开发了一种先进的多视图图级表示学习 (MGRL) 框架,该框架整合了先前的生物网络信息,以细胞类型分辨率构建分子衰老时钟,随后我们使用 XAI 对其进行解释。我们将该框架应用于最大的单细胞转录组数据集之一,该数据集包含来自 981 名捐赠者的一百万多个免疫细胞,揭示了一个核糖体基因子网络,其表达与年龄无关,与细胞类型无关。将相同的 DL-XAI 框架应用于分类单核细胞的 DNA 甲基化数据,揭示了一种表观遗传失调的炎症反应途径,其活性随着年龄的增长而增加。我们表明,如果我们使用更标准的机器学习方法,就不会发现核糖体模块和炎症途径。总之,这里介绍的计算深度学习框架说明了深度学习与可解释的人工智能工具相结合如何揭示对复杂衰老过程的新颖生物学见解。
更广泛的治疗选择:针对共同的基因驱动因素可以开发出对多种癌症类型都有效的治疗方法。更快的药物获取:重新利用现有药物可以缩短新疗法到达患者手中的时间。个性化风险评估:使用基因特征,医生可以根据患者特定的转移风险量身定制治疗方案。