除了已经工业化的技术外,几种液流电池模型还探索了创新的电解质化学,包括基于金属和有机氧化还原物质的化学。目标是制造一种使用寿命长且超越电池技术平均能力的液流电池。事实上,液流电池的整体可持续性在很大程度上取决于用作氧化还原物质的成分。文献中描述了 50 多种电解质变体。1,2 对于基于金属的液流电池,广泛研究的化学物质包括铁/铬 RFB、锌/铁 RFB、锌/溴化物 RFB,然而,钒 RFB (VRFB) 是能源市场上商业化程度最高、开发程度最高的。3 与此同时,有机(无金属)液流电池的市场进入也在迅速推进。4 迄今为止使用的最常见的有机氧化还原物质是羰基(醌/蒽醌)、茂金属(如二茂铁衍生物)、氮氧自由基、紫罗碱衍生物等。 5
氧化还原流量电池(RFB)近年来由于其在大规模储能系统中的有希望的应用而引起了越来越多的关注[1-3]。rfb的特征是它们具有脱钩的能力和功率能力,较长的周期寿命和高效率,这使其成为整合间歇性可再生能源(例如风能和太阳能)的理想选择[4,5]。然而,RFB的广泛范围受到了几个挑战,包括能量密度有限,复杂反应动力学和高系统成本[6,7]。RFB性能的准确有效的预测模型对于应对这些挑战并实现电池系统设计和操作的优化至关重要。在这项工作中,我们专注于全面氧化还原流量电池(VRFB)的性能的预测[8,9],这是最受欢迎和最成熟的RFB技术之一[10]。
摘要:氧化还原电池(RFB)被认为是用于固定存储应用的最有希望的电化学能源存储技术之一,尤其是在长期持续时间的储能服务中。rfbs是电化学转换器,使用旋转介质作为或用活性材料,可以逆转电化学反应。了解技术标准和其他法规的知识为通过统一的说明和通常适用的规则成功和安全商业化的基础奠定了基础。文献中报道了有关RFB的安全性和法规问题的少量论文,主要是有两个原因。首先,因为这项技术被认为是安全的;其次,因为大多数出版物都仅限于化学材料的短期表征研究。本文旨在帮助填补这一差距,为研究人员和学生提供有关RFB的安全性和监管方面的入门知识,主要是从电气和水力的角度来看。读者被转称是针对更深入研究和分析的特定法规。
氧化还原液流电池 (RFB) 是一种电化学液流系统,将能量存储在可溶性氧化还原对中,通常允许分离存储容量和功率输出。能量以包含氧化还原系统的两种液体介质的形式存储。这些液体被泵送通过电池,在那里发生电化学转换。RFB 的一个有趣特征是容量和功率的独立可扩展性。1 因此,如果需要存储更多能量,则不需要更大的电极,而传统电池则需要这样做,因为传统电池的能量存储和转换并不分离。这使得 RFB 对于需要存储大量能量但对最大功率的要求适中的大规模存储应用特别有趣。最重要的 RFB 类型是基于钒的(氧化还原系统 V 2 + /V 3 + 在一侧,V 4 + /V 5 + 在另一侧)。参考文献 2、3 中报告了 RFB 技术的详细描述。详细示意图可在参考文献 4 中找到。
摘要近年来,非水体完全有机的氧化还原流量电池(RFB)通过依靠氧化还原活性有机分子来扩大RFB的电化学窗口和增强RFB的能量密度的潜力,可提供与金属电荷载体相比的可持续性。依靠单个双极氧化还原分子(BRM)进行操作的系统,称为对称有机RFB,随着BRM的利用的利用消除了膜交叉问题,从而延长了电能量存储系统的寿命,同时延长了其成本。在此手稿中,我们将通过在Helicene Carbosion类中的可调性双极分子的设计来展示对该领域的贡献。这种特殊类型的BRM在综合上非常实惠,并且被证明是高度可修改和健壮的。通过检查11个示例,我们将演示如何有效地使用基于随时可用的电化学工具的方法来生成和评估化合物库,以供未来的全流RFB应用程序。
摘要:本综述介绍并批判性地讨论了为提高氧化还原液流电池 (RFB) 的性能而开发和应用的改性膜的最新进展。本综述首先介绍了储能化学原理以及在工业和运输相关领域的能源转型中使用 RFB 的潜力。接下来简要介绍并比较了常用的膜改性技术。然后批判性地讨论了在不同 RFB 化学中应用改性膜的最新进展。概述了给定的膜改性策略、相应的非原位特性及其对电池性能的影响之间的关系。已经证明,需要进一步专门研究以开发最佳改性技术,因为改性通常会减少氧化还原活性物质的交叉,但同时会导致膜电阻增加。使用类似于水净化应用中采用的替代先进改性方法的可行性尚待评估。此外,仍必须研究改性膜在 RFB 循环过程中的长期稳定性和耐用性。最后强调了剩余的挑战和潜在的解决方案以及有希望的未来前景。
流量电池系统的原理是由国家航空和太空管理局的L. H. Thaller于1974年提出的,[1]专注于FE/CR系统,直到1984年。1979年,日本的电工实验室也取得了FE/CR系统开发的进展,该系统是新的能源和工业技术开发组织的一个项目[2]。在1980年代,澳大利亚新南威尔士大学开始开发钒流电池(VFB)。不久之后,由于Zn-Metal阳极对水系统的适应性较高,基于Zn的RFB被广泛报道,其中Zn/Br 2系统是首次报道。在1990年代,Regenesys Ltd发明了RFB系统,NABR在正面,而Na 2 S 4在负面为电解质。在2010年代之前,已经提出了许多类型的RFB系统,包括全铁,非水有机体和有机流量电池[3]。近年来,在提高其绩效和降低成本方面取得了重大进展。目前,RFB,尤其是VFB和锌溴RFB被认为是相对成熟的技术,并且正在积极部署在各种应用中。
电能存储是大规模部署和整合风能、太阳能等可再生但间歇性能源的重要组成部分。[1] 液流电池 (RFB) 是一种很有前途的电网级储能技术,由于其可扩展性高、放电时间长、储能与发电分离以及运行固有安全等特点,为深度脱碳提供了许多高价值机会。[2] 传统的液流电池采用低丰度金属离子氧化还原对,如钒,这与技术挑战有关,包括相对较低的能量密度以及高成本和环境问题,限制了它们广泛的商业成功。 [2–4] 近来,有机和有机金属氧化还原活性材料,如醌、[5] 吩嗪、[6] 氮氧自由基、[7] 紫精、[7,8] 芴酮、[9] 有机铁配合物、[10,11] 及其
氧化还原液流电池 (RFB) 因其灵活的设计、可扩展性和低成本而成为固定储能应用的一项有前途的技术。在 RFB 中,能量以可流动的氧化还原活性材料 (redoxmers) 的形式传输,这些材料存储在外部并在运行期间泵送到电池中。要进一步提高 RFB 的能量密度,就需要设计具有更宽氧化还原电位窗口和更高溶解度的氧化还原聚合物。此外,设计具有荧光自报告功能的氧化还原聚合物可以监测 RFB 的健康状况。为了加速发现具有所需特性的氧化还原聚合物,最先进的机器学习 (ML) 方法(例如多目标贝叶斯优化 (MBO))非常有用。在这里,我们首先采用密度泛函理论计算,基于 2,1,3-苯并噻二唑 (BzNSN) 核心结构,为 1400 个氧化还原聚合物分子生成还原电位、溶剂化自由能和吸收波长的数据库。根据计算出的属性,我们确定了 22 种兼具所有所需属性的帕累托最优分子。我们进一步利用这些数据开发和基准测试了 MBO 方法,以快速有效地识别具有多种目标属性的候选分子。使用 MBO,与蛮力或随机选择方法相比,从 1400 个分子数据集中识别最佳候选分子的效率至少提高 15 倍。重要的是,我们利用这种方法从 100 万个基于 BzNSN 的分子的未知数据库中发现了有前途的氧化还原体,我们发现了 16 种新的帕累托最优分子,其性能比最初的 1400 种分子有显著改善。我们预计这种主动学习技术是通用的,可用于发现满足多种所需属性标准的任何一类功能材料。
摘要:由于其高扩展性,安全性和灵活性,水氧化还原流量电池(RFB)已成为有希望的大型储能设备。基于锰的氧化还原材料是由于其地球丰度,负担能力和各种氧化状态而用于RFB的有希望的来源。然而,Mn氧化还原夫妻的不稳定性归因于已知涉及强jahn- teller效应的Mn 3+(D 4)的不稳定的D轨道构型,这阻碍了它们的实际使用。在这里,我们发现[Mn(CN)6] 5 - /4 - /3- negolyte在可逆性,稳定性和反应动力学方面提供了优势,这是由于添加了NACN支撑电解质,从而抑制了配体交换反应,从而导致高性能。[Mn(CN)6] 5 - /4 - /3- negolyte具有从Mn(I)到Mn(III)的稳定的多电体反应,导致100个周期后的高容量为133.7 mAh。我们提供了从原位拉曼分析获得的化学证据,用于在电化学循环过程中前所未有的MN(i)稳定性,开辟了针对低成本基于MN的氧化还原系统设计的新途径。a